Advertisement

Evolution of the Indian Shield: A New Approach

  • Ram S. SharmaEmail author
  • M. E. A. Mondal
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

Indian shield has five distinct cratonic blocks, namely Dharwar craton (DC), Bastar craton (BC), Singhbhum craton (SC), Bundelkhand craton (BkC) and Aravalli craton (AC), all comprising greenstone-gneiss in different abundance ratios. As in other Archean terrains, this ocean-continental rock association dichotomy is explained by extrusion of mafic lava and its transformation into greenstone along with its melting at depth to generate tonalitic magma that crystallized and deformed to form Archean tonalite, trondhjemite, granodiorite (TTG) gneisses, now seen interspersed with the metabasic components. Interior of the three Indian cratons viz. DC, BC and SC, contains nucleus of Archean gneisses (3.6–3.4 Ga), occurring either as separate crustal components or as inclusions in younger granitic intrusions. The remaining cratons of Bundelkhand and Aravalli are dominantly granitic gneisses, interpreted here as having a possible genetic relationship with the Singhbhum granite complex (SG I and SG II) as the product of partial melting of amphibolites of Older Metamorphic Group (OMG) and its possible basement called Older Metamorphic Tonalite Group (OMTG). This proposition is supported by their geochemical similarities; TTG rocks of the BkC and AC areas show fractionated LREE, weak negative Eu anomaly and gentle sloping HREE, similar to those found in Singhbhum granite complex (SG I and SG II) located to the south of the E-W trending Son-Narmada lineament. The earliest sedimentation in SC occurred at 3.5 Ga with deposition of OMG but 200 Ma later in DC with deposition of Sargur (3.3–3.1 Ga), and in uncertain period of deposition for the Sukma and Amgaon group of rocks in the BC. However, the first supracrustals over the Banded Gneissic Complex (BGC)-Berach granite, defining Aravalli craton, and also over the Bundelkhand craton, located to the north of the Son-Narmada lineament, were deposited after 2.5 Ga when all the Indian cratonic blocks of the Indian shield had stabilized with maximum growth. Because of unequal erosion, differing metamorphic grades and varying proportions of greenstone and TTG gneisses, the five cratons within the Indian shield cannot be correlated and thus negating the proposition that the Indian shield is formed by accretion of separate continental fragments. It is further argued that the joining of different Proterozoic fold belts of relatively short elongation and occurring singularly, or in parallel belts, at the cratonic margins such as that of AC, SC and BC of the Indian shield, is untenable because of their ensialic orogenesis involving little horizontal movement of the colliding crustal blocks.

Keywords

Indian shield Cratons Crustal evolution Precambrian 

Notes

Acknowledgements

Authors are thankful to Prof. Saibal Gupta and Dr. Rajneesh Bhutani for their critical review and suggestions that led to considerable improvement of the manuscript.

References

  1. Acharyya, S. K. (2003). The nature of Mesoproterozoic Central Indian Tectonic Zone with exhumed and reworked older granulites. Gondwana Research, 6, 197–214.CrossRefGoogle Scholar
  2. Basu, A. K. (1986). Geology of parts of the Bundelkhand granite massif, Central India. Geological Survey of India Research, 117(2), 61–124.Google Scholar
  3. Basu, A. R., Ray, S. L., Saha, A. K., & Sarkar, S. N. (1981). Eastern Indian 3800-million year old crust and early mantle differentiation. Science, 212, 1502–1506.CrossRefGoogle Scholar
  4. Bhaskar Rao, Y. J., Naha, K., Srinivasan, R., & Gopalan, K. (1991). Geology, geochemistry and geochronology of the Archaean Peninsular Gneiss around Gorur, Hassan District, Karnataka, India. Proceedings of the Indian Academy of Sciences—Earth and Planetary Sciences, 100(4), 399–412.Google Scholar
  5. Cawood, P. A., Kröner, A., & Pisarevsky, S. (2006). Precambrian platetectonics: Criteria and evidence. GSA Today, 16(7), 4–11.  https://doi.org/10.1130/GSAT01607.1.CrossRefGoogle Scholar
  6. Chalapathi Rao, N. V., & Srivastava, R. K. (2009). A new find of boninite dyke from the Palaeoproterozoic Dongargarh Supergroup: Inference for a fossil subduction zone in the Archaean of the Bastar craton, Central India. Neues Jahrbuch für Mineralogie—Abhandlungen.  https://doi.org/10.1127/0077-7757/2009/0151.CrossRefGoogle Scholar
  7. Crookshank, H. (1963). Geology of southern Bastar and Jeypore from the Bailadila range to the Eastern Ghats. Geological Survey of India Memoirs, 87, 1–150.Google Scholar
  8. Das, K., Yokoyama, K., Chakraborty, P. P., & Sarkar, A. (2009). Basalt tuffs and contemporaneity of Chhattisgarh and Khariar basins based on new dates and geochemistry. Journal of Geology, 117, 88–102.CrossRefGoogle Scholar
  9. Dash, J. K., Pradhan, S. K., Bhutani, R., Balakrishnan, S., Chandrasekaran, G., & Basavaiah, N. (2013). Paleomagnetism of ca. 2.3 Ga mafic dyke swarms in the northeastern Southern Granulite Terrain, India: Constraints on the position and extent of Dharwar craton in the Paleoproterozoic. Precambrian Research, 228, 164–176.CrossRefGoogle Scholar
  10. Evans, D. A. D., & Pisarevsky, S. A. (2008). Plate tectonics on early earth? Weighing the paleomagnetic evidence. In K. C. Condie & V. Pease (Eds.), When Did Plate Tectonics Begin on Planet Earth? (vol. 440, pp. 249–263). Geological Society of America Special Paper.  https://doi.org/10.1130/2008.2440(12).CrossRefGoogle Scholar
  11. Gerya, T. (2014). Precambrian geodynamics: Concepts and models. Gondwana Research, 25, 442–463.CrossRefGoogle Scholar
  12. Ghosh, J. G. (2004). 3.56 Ga tonalite in the central part of the Bastar Craton, India: Oldest Indian date. Journal of Asian Earth Sciences, 23, 359–364.CrossRefGoogle Scholar
  13. Gopalan, K., Macdougall, J. D., Roy, A. B., & Murali, A. V. (1990). Sm–Nd evidence for 3.3 Ga old rocks in Rajasthan, Northwestern India. Precambrian Research, 48, 287–297.CrossRefGoogle Scholar
  14. GSI and ISRO. (1994). Project Vasundhara: Generalized Geological Map, scale 1:2 million. Bangalore: Geological Survey of India and Indian Space Research Organization.Google Scholar
  15. Gupta, S., Rai, S. S., Prakasam, K. S., Srinagesh, D., Bansal, B. K., Chadha, R. K., et al. (2003). The nature of the crust in southern India: Implications for Precambrian crustal evolution. Geophysical Research Letters.  https://doi.org/10.1029/2002gl016770.
  16. Halla, J., van Hunen, J., Heilimoc, E., & Hölttäd, P. (2009). Geochemical and numerical constraints on Neoarchean plate tectonics. Precambrian Research, 174, 155–162.CrossRefGoogle Scholar
  17. Hussain, M. F., Mondal, M. E. A., & Ahmad, T. (2004). Petrological and geochemical characteristics of Archean gneisses and granitoids from Bastar craton, Central India—Implication for subduction related magmatism. Gondwana Research, 7(2), 531–537.CrossRefGoogle Scholar
  18. Jayananda, M., Kano, T., Peucat, J.-J., & Channabasappa, S. (2008). 3.35 Ga komatiite volcanism in the western Dharwar craton: Constraints from Nd isotopes and whole rock geochemistry. Precambrian Research, 162, 160–179.CrossRefGoogle Scholar
  19. Kaur, P., Zeh, A., Chaudhari, N., & Eliyas, N. (2016). Unraveling the record of Archaean crustal evolution of the Bundelkhand Craton, Northern India using U–Pb zircon-monazite ages, Lu–Hf isotope systematics, and whole-rock geochemistry of granitoids. Precambrian Research, 281, 384–413.CrossRefGoogle Scholar
  20. Kaur, P., Zeh, A., & Chaudhri, N. (2014). Characterisation and U–Pb–Hf record of the 3.55 Ga felsic crust from the Bundelkhand Craton, Northern India. Precambrian Research, 255, 236–244.CrossRefGoogle Scholar
  21. Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A., & Kinny, P. D. (2006). Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439, 580–583.CrossRefGoogle Scholar
  22. Kerrich, R., & Polat, A. (2006). Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early earth global dynamics? Tectonophysics, 415, 141–165.  https://doi.org/10.1016/j.tecto.2005.12.004.CrossRefGoogle Scholar
  23. Maibam, B., Gerdes, A., & Goswami, J. N. (2016). U–Pb and Hf isotope records in detrital and magmatic zircon from eastern and western Dharwar craton, Southern India: Evidence for coeval Archaean crustal evolution. Precambrian Research, 275, 496–512.CrossRefGoogle Scholar
  24. Mallikharjuna Rao, J., Poornachandra Rao, G. V. S., Widdowson, M., & Kelley, S. (2005). Evolution of Proterozoic mafic dyke swarms of the Bundelkhand Granite Massif, Central India. Current Science, 88, 502–506.Google Scholar
  25. Maya, J. M., Bhutani, R., Balakrishnan, S., & Rajee Sandhya, S. (2016). Petrogenesis of 3.15 Ga old Banasandra komatiites from the Dharwar craton, India: Implications for early mantle heterogeneity. Geoscience Frontiers.  https://doi.org/10.1016/j.gsf.2016.03.007.
  26. McDonough, W. F., & Sun, S.-S. (1995). Composition of the earth. Chemical Geology, 120, 223–253.CrossRefGoogle Scholar
  27. Meert, J. G., & Pandit, M. K. (2015). The Archaean and Proterozoic history of Peninsular India: Tectonic framework for Precambrian sedimentary basins of India. In R. Mazumder & P. G. Eriksson (Eds.), Precambrian basins of India: Stratigraphic and tectonic context (Vol. 43, pp. 29–54). London: Geological Society, London, Memoirs.Google Scholar
  28. Merrill, R. T., McElhinny, M. W., & McFadden, P. L. (1998). The magnetic field of the Earth (531p). San Diego: Academic Press.Google Scholar
  29. Misra, S., Deomurari, M. P., Wiedenbeck, M., Goswami, J. N., Ray, S. L., & Saha, A. K. (1999). 207Pb/206Pb zircon ages and the evolution of the Singhbhum craton, Eastern Indian shield. Gondwana Research, 8, 129–142.CrossRefGoogle Scholar
  30. Misra, S., & Jhonson, P. T. (2005). Geochronological constraints on evolution of Singhbhurn Mobile Belt and associated basic volcanics of Eastern Indian shield. Gondwana Research, 8(2), 129–142.CrossRefGoogle Scholar
  31. Mondal, M. E. A., & Ahmad, T. (2001). Bundelkhand mafic dykes, central Indian shield: Implications for the role of sediment subduction in Proterozoic crustal evolution. Island Arc, 10, 51–67.CrossRefGoogle Scholar
  32. Mondal, S. K., Frei, R., & Ripley, E. M. (2007). Os isotope systematics of mesoarchean chromitite-PGE deposits in the Singhbhum Craton (India): Implications for the evolution of lithospheric mantle. Chemical Geology, 244, 391–408.CrossRefGoogle Scholar
  33. Mondal, M. E. A., Goswami, J. N., Deomurari, M. P., & Sharma, K. K. (2002). Ion microprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, Northern India: Implications for crustal evolution of the Bundelkhand-Aravalli protocontinent. Precambrian Research, 117, 85–100.CrossRefGoogle Scholar
  34. Mondal, M. E. A., Hussain, M. F., & Ahmad, T. (2006). Continental growth of Bastar Craton, Central Indian shield during Precambrian via multiphase subduction and lithospheric extension/rifting: Evidence from Geochemistry of Gneisses, Granitoids and Mafic dykes. Journal Geosciences, 49, 137–151.Google Scholar
  35. Moyen, J. F., & Martin, H. (2012). Forty years of TTG research. Lithos, 148, 312–336.CrossRefGoogle Scholar
  36. Naha, K., Srnivasan, R., & Jayaram, S. (1991). Sedimentational, structural and migmatitic history of the Archaean Dharwar tectonic province, Southern India. Proceedings of the Indian Academy of Sciences—Earth and Planetary Sciences, 100, 413–433.Google Scholar
  37. Naqvi, S. M., & Rogers, J. J. W. (1987). Precambrian geology of India (p. 233). Oxford: Oxford University Press.Google Scholar
  38. Patino Douce, A. E. (1999). What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In A. Castro, C. Fernandez, & J. L. Virgneressese (Eds.), Understanding granites: Integrating new and classical techniques (Vol. 168, pp. 55–75). London: Geological Society of London Special Publication.Google Scholar
  39. Pichamuthu, C. S., & Srinivasan, R. (1984). The Dharwar Craton, perspective report series. Indian National Science Academy, 7, 3–34.Google Scholar
  40. Pradhan, V. R., Meert, J. G., Pandit, M., Kamenov, G., & Mondal, M. E. A. (2012). Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, Central India: Implications for the tectonic evolution and paleogeographic reconstructions. Precambrian Research, 198–199, 51–76.CrossRefGoogle Scholar
  41. Rahaman, M. S., & Mondal, M. E. A. (2013). Geochemistry and Petrogenesis of Archaean tonalite-trondhjemite-granodiorite (TTG) and calc-alkaline granitoids of Aravalli craton, Northwestern Indian Shield: Implications for crustal evolution. Gondwana Geological Magazine, 28(1), 1–10.Google Scholar
  42. Ram Mohan, M., Singh, S. P., Santosh, M., Siddiqui, M. A., & Balaram, V. (2012). TTG suite from the Bundelkhand Craton, Central India: Geochemistry, petrogenesis and implications for Archean crustal evolution. Journal of Asian Earth Sciences, 58, 38–50.CrossRefGoogle Scholar
  43. Ramakrishnan, M. (1990). Crustal development in Southern Bastar, Central India craton. Geological Survey of India Special Publication, 28, 44–66.Google Scholar
  44. Ramakrishnan, M., & Vaidyanathan, R. (2008). Geology of India (vol. 1, 556p). Bangalore: Geological Society of India.Google Scholar
  45. Rogers, J. J. W. (1996). A history of continents in the past three billion years. Journal of Geology, 104, 91–107.CrossRefGoogle Scholar
  46. Roy, A. B., & Kröner, A. (1996). Single zircon evaporation ages constraining the growth of the Archaean Aravalli craton, Northwestern Indian shield. Geological Magazine, 133, 333–342.CrossRefGoogle Scholar
  47. Roy, A. B., Kröner, A., Rathore, S., Laul, V., & Purohit, R. (2012). Tectono-Metamorphic and Geochronologic Studies from Sandmata Complex, Northwest Indian Shield: Implications on Exhumation of Late-Palaeoproterozoic Granulites in an Archaean-early Palaeoproterozoic Granite-Gneiss Terrane. Journal Geological Society of India, 79, 323–334.CrossRefGoogle Scholar
  48. Saha, A. K. (1994). Crustal evolution of Singhbhum-North Orissa, Eastern India (vol. 27, 341p). Bangalore: Geological Society of India.Google Scholar
  49. Saha, L., Frei, D., Gerdes, A., Pati, J. K., Sarkar, S., Patoke, V., et al. (2016). Crustal geodynamics from the Archaean Bundelkhand Craton, India: Constraints from zircon U–Pb–Hf isotope studies. Geological Magazine, 153, 179–192.CrossRefGoogle Scholar
  50. Saha, A. K., & Ray, S. L. (1984). The structural and geochemical evolution of the Singhbhum granite batholithic complex, India. Tectonophysics, 105, 163–176.CrossRefGoogle Scholar
  51. Sarkar, G., Corfu, F., Paul, D. K., Mcnaughton, N. J., Gupta, S. N., & Bishui, P. K. (1993). Early Archaean crust in Bastar craton, Central India—A geochemical and isotopic study. Precambrian Research, 62, 127–137.CrossRefGoogle Scholar
  52. Sarkar, A., Sarkar, G., Paul, D. K., & Mitra, N. D. (1990). Precambrian geochronology of the Central Indian shield—A review. Geological Survey of India Special Publication, 28, 453–482.Google Scholar
  53. Sharma, R. S. (2009). Cratons and fold belts of India. Lecture Notes in Earth Sciences, 127, 41–115.CrossRefGoogle Scholar
  54. Sharma, R. S. (2015). An overview of Indian cratons. In: Geodynamics of the Singhbhum craton: Present Status and Future Directions. Workshop at CSIR-National Geophysical Research Institute, Hyderabad, p. 3.Google Scholar
  55. Sharma, K. K., & Rahman, A. (1995). Occurrence and petrogenesis of Loda Pahar trondjhemitic gneiss from Bundelkhand craton, Central India: Remnant of an early crust. Current Science, 69, 613–617.Google Scholar
  56. Sizova, E., Gerya, T., Brown, M., & Perchuk, L. L. (2010). Subduction styles in the Precambrian: Insight from numerical experiments. Lithos, 116, 209–229.CrossRefGoogle Scholar
  57. Srivastava, R. K., Ellam, R. M., & Gautam, G. C. (2009). Sr-Nd isotope geochemistry of the early Precambrian subalkaline mafic igneous rocks from the southern Bastar craton, Central India. Mineralogy and Petrology, 96(1–2), 71–79.CrossRefGoogle Scholar
  58. Srivastava, R. K., & Gautam, G. C. (2009). Precambrian mafic magmatism in the Bastar craton, Central India. Journal of Geological Society of India., 73, 52–72.CrossRefGoogle Scholar
  59. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313–345.CrossRefGoogle Scholar
  60. Upadhyay, D., Chattopadhyay, S., Kooijman, E., Mezger, K., & Berndt, J. (2014). Magmatic and metamorphic history of Paleoarchean tonalite–trondhjemite–granodiorite (TTG) suite from the Singhbhum craton, eastern India. Precambrian Research, 252, 180–190.CrossRefGoogle Scholar
  61. Van Hunen, J., & Van den Berg, A. (2008). Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere. Lithos, 103, 217–235.CrossRefGoogle Scholar
  62. Verma, S. K., Verma, S. P., Oliveira, E. P., Singh, V. K., & Moreno, J. A. (2016). LA-SF-ICP-MS zircon U–Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India. Journal of Asian Earth Sciences, 118, 125–137.CrossRefGoogle Scholar
  63. Wani, H., & Mondal, M. E. A. (2011). Evaluation of provenance, tectonic setting and paleoredox conditions of the Meso-Neoproterozoic basins of the Bastar craton, Central Indian Shield: Using petrography of sandstones and geochemistry of shales. Lithosphere, 3, 143–154.CrossRefGoogle Scholar
  64. Wiedenbeck, M., & Goswami, J. N. (1994). High precision zircon geochronology using a small ion microprobe. Geochimica et Cosmochimica Acta, 58, 2135–2141.CrossRefGoogle Scholar
  65. Wiedenbeck, M., Goswami, J. N., & Roy, A. B. (1996). Stabilization of the Aravalli Craton of Northwestern India at 2.5 Ga: An ion microprobe zircon study. Chemical Geology, 129, 325–340.CrossRefGoogle Scholar
  66. Windley, B. F. (1995). The evolving continents (p. 526). Chichester: Wiley.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.INSA Honorary FellowJaipurIndia
  2. 2.Department of GeologyAligarh Muslim UniversityAligarhIndia

Personalised recommendations