Skip to main content

Genesis of Epidiorites Associated with Dhalbhum Formation of Proterozoic Singhbhum Basin

  • Chapter
  • First Online:
Geological Evolution of the Precambrian Indian Shield

Part of the book series: Society of Earth Scientists Series ((SESS))

  • 583 Accesses

Abstract

Epidiorites occurring as conspicuous bands and sill-like bodies interstratified with schistose rocks of Dhalbhum Formation, belonging to Proterozoic Singhbhum Group, are rocks of enigmatic nature characterized by volcanic flows associated with tuffs and other volcaniclastic materials, the genesis of which has so far remained a matter of debate. They are very fine-grained, less schistose with irregular joints, partings and splintery habits. Petrographically, they are characterized by greenschist facies mineralogy represented by albite–epidote–chlorite ± actinolite assemblages similar to the Dalma rocks occupying the mid basinal part of the Singhbhum mobile belt but with higher proportion of saussuritized plagioclase and sericitized K-feldspar often containing oval and elliptical bombs and tephra of glassy matters revealing their tuffaceous character. Their overall compositional homogeneities and other chemical attributes indicate their tholeiitic to calc-alkaline nature. Some of them show very close chemical proximity with the Dalma metavolcanic rocks which are characterized by exceedingly low-K tholeiites comparable to oceanic abyssal tholeiitic basalts falling within the chemical spectrum of enriched MORB ranging in composition from mafic to somewhat ultramafic lavas. The various chemical trends amply suggest that epidiorites are the late differentiates of Dalma parental magma ranging in composition from basalt–basaltic trachy andesite–trachy andesite following the iron suppressed calc-alkaline line of descent. The MORB and Chondrite normalized patterns showing more spiky nature in contrast to relatively smooth patterns of Dalmas are also suggestive of their more evolved nature. Enrichment of LREE (~7xHREE), higher range of total REE (200–434 ppm) as well as (La/Sm)N (3.45–4.78) and (La/Yb)N (7.81–11.60) also indicate their fractionated character. A distinctive negative Eu-anomaly marks the REE patterns of the more felsic epidiorites. A narrow range of variation in Ce/Nd ratio in Dalma metavolcanics (1.26–1.55) and epidiorites (1.80–2.49) together with Mg number (58–74) and FeO0/MgO (0.85–1.59) suggest their comagmatic character. The enriched MORB composition and bimodal mafic to ultramafic effusion of Dalma rocks are specific of back-arc extensional tectonic regime showing signs of violent eruptive nature both subaerial and subaqueous. Dalmas as well as the epidiorites with 4–5% MgO simulate the common chemical features of the back-arc basalt from East Scotia basin in south Atlantic. The study of epidiorites assumes significance as components of Dalma volcanics are also found within the Dhalbhum succession. The larger implication of the work has suggested that the volcanic dominated Singhbhum Group of rocks resemble the Precambrian greenstone associations related to island-arc assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arculus, R. J., & Powell, R. (1986). Source component mixing in the regions of arc magma generation. Journal of Geophysical Research, 91, 5913–5926.

    Article  Google Scholar 

  • Bose, M. K. (1994). Sedimentation pattern and tectonic evolution of the Proterozoic Singhhum basin in the eastern Indian Shield. Tectonophysics, 23, 325–346.

    Article  Google Scholar 

  • Bose, M. K. (2000). Mafic-ultramafic magmatism in the eastern Indian craton–a review. Geological Survey of India Special Publication, 55, 227–258.

    Google Scholar 

  • Bose, M. K., & Chakraborti, M. K. (1981). Fossil marginal basin from the Indian shield: A model for the evolution of Singhbhum Precambrian belt, Eastern India. Geologische Rundschau, 70, 504–518.

    Article  Google Scholar 

  • Chakraborti, M. K., & Bose, M. K. (1985). Evaluation of the tectonic setting of Precambrian Dalma volcanic belt, eastern India, using major and trace element characters. Precambrian Research, 28, 253–268.

    Article  Google Scholar 

  • Chatterjee, P., De, S., Ranaivoson, M., Mazumder, R., & Arima, M. (2013). A review of the ~1600 Ma sedimentation, volcanism and tectono-thermal events in the Singhbhum craton, Eastern India. Geoscience Frontiers, 4(3), 277–287.

    Article  Google Scholar 

  • Condie, K. C. (1989). Geochemical changes in basalts and andesites across the Archaean-Proterozoic boundary: Identification and significance. Lithos, 23, 1–18.

    Article  Google Scholar 

  • Crawford, A. J., Beccaluva, L., & Serri, G. (1981). Tectonomagmatic evolution of the west Phillipine—Mariana region and the origin of boninites. Earth and Planetary Science Letters, 54, 346–356.

    Article  Google Scholar 

  • Dasgupta, H. C., &  Mishra, S. (2005). Petrogenesis of Hudupahar Gitilgarh Metabasic Rocks in Chotanagpur Granite Gneiss. Journal of the Geological Society of India, 66(1), 66–80.

    Google Scholar 

  • Davidson, J. P. (1996). Deciphering mantle and crustal signatures in subduction zone magmatism. In G. E. Bebout, D. W. Scholl, S. H. Kirby, & J. P. Platt (Eds.), Subduction top to bottom (Vol. 96, pp 251–262). American Geophysical Union Geophysical Monograph.

    Chapter  Google Scholar 

  • Dunn, J. A., & Dey, A. K. (1942). The Geology and Petrology of Eastern Singhbhum and surrounding areas. Memoirs of the Geological Survey of India, 69(2), 281–456.

    Google Scholar 

  • Dwivedi, A. K., Pandey, U. K., Murugan, C., Bhatt, A. K., & Ramesh Babu, P. V. (2011). Geochemistry and geochronology of A-type Barabazar Granite: Implications on the geodynamics of South Purulia Shear Zone, Singhbhum Craton. Journal of the Geological Society of India, 77, 527–538.

    Article  Google Scholar 

  • Engel, A. E. J., Engel, C. G., & Havens, R. G. (1965). Chemical characteristics of oceanic basalts and the upper mantle. Bulletin of the Geological Society of America, 76, 719–725.

    Article  Google Scholar 

  • Eriksson, P. G., Mazumder, R., Catuneanu, O., Bumby, A. J., & Ountsche Ilondo, B. (2006). Precambrian continental freeboard and geological evolution: A time perspective. Earth-Science Reviews, 79, 165–204.

    Article  Google Scholar 

  • Grove, T. L., & Baker, M. B. (1984). Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. Journal of Geophysical Research, 89, 3253–3274.

    Article  Google Scholar 

  • Gupta, A., & Basu, A. (1979). On the occurrence of pillow lavas in Dalma metavolcanic suite, Singhbhum and Ranchi districts, Bihar. Journal of the Geological Society of India, 20, 42–44.

    Google Scholar 

  • Gupta, A., Basu, A., & Singh, S. K. (1977). Occurrence of a pyroclastic conglomerate in Dalma metavolcanics, Singhbhum district, Bihar. Indian Journal of Earth Sciences, 4(2), 160–168.

    Google Scholar 

  • Hart, S. R., & Blusztajn, J. (2006). Age and geochemistry of the mafic sills, ODP site 1276, Newfoundland margin. Chemical Geology, 235, 222–237.

    Article  Google Scholar 

  • Hawkesworth, C. J., & Powell, M. (1980). Magma genesis in the Lesser Antilles island arc. Earth and Planetary Science Letters, 51, 297–308.

    Article  Google Scholar 

  • Hirose, K., & Kawamoto, T. (1995). Hydrous partial melting of lherzolite at 1GPa: The effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters, 133, 463–473.

    Article  Google Scholar 

  • Jensen, L. S. (1976). A new cation plot for classifying sub-alkalic volcanic rocks. Miscellaneous paper (Ontario Division of Mines), Vol. 66, p22.

    Google Scholar 

  • Karig, D. E. (1971). Origin and development of marginal basins in the western Pacific. Journal Geophysical Research, 76, 2542–2561.

    Article  Google Scholar 

  • Keith, S. B. (1978). Palaeosubduction geometries inferred from cretaceous and tertiary magmatic patterns in south western south America. Geology, 6, 516–521.

    Article  Google Scholar 

  • Kumar, V. (2014). Stratigraphic status of the Koderma Mica belt vis-a-vis the tectonic evolution of amphibolites of the Chotanagpur region. IJEE, 7(4), 764–774.

    Google Scholar 

  • Le Maitre, R. W. (2002). Igneous rocks: A classification and glossary of terms (2nd ed., p. 236). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mazumder, R. (2005). Proterozoic sedimentation and volcanism in the Singhbhum crustal province, India and their implications. Sedimentary Geology, 176, 167–193.

    Article  Google Scholar 

  • Mazumder, R., & Altermann, W. (2009). A brief overview of Paleoproterozoic geology of the Singhbhum Crustal Province, Eastern India. Rep IGCP 509. http://earth.yale.edu/sites/default/files/files/IGCP/SinghbhumRepIGCP(1).pdf.

  • McBirney, A. R. (1996). The Skaergaard intrusion. In R. G. Cawthorn (Ed.), Layered intrusions (pp. 147–180). New York: Elsevier.

    Chapter  Google Scholar 

  • McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.

    Article  Google Scholar 

  • Miyashiro, A. (1974). Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4), 321–355.

    Article  Google Scholar 

  • Pearce, J. A. (1983). Role of sub-continental lithosphere in magma genesis at active continental margins. In C. J. Hawkesworth & M. J. Norry (Eds.), Continental basalts and mantle xenoliths (pp. 230–249). Cheshire: Shiva Publ.

    Google Scholar 

  • Powell, R. (1978). Thermodynamics of rock and fluid systems: Equilibrium thermodynamics in petrology (p. 283). New York: Harper and Row.

    Google Scholar 

  • Sarkar, S. N., & Saha, A. K. (1962). A revision of the Precambrian stratigraphy and tectonics of Singhbhum and adjacent regions. Quarterly Journal Geological, Mining and Metallurgical Society of India, 34(2&3), 97–136.

    Google Scholar 

  • Saunders, A. D., & Tarney, J. (1979). The geochemistry of basalt from back-arc spreading center in the East Scotia sea. Geochimica et Cosmochimica Acta, 43, 555–572.

    Article  Google Scholar 

  • Schmidt, M. W., & Poli, S. (1998). Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163, 361–379.

    Article  Google Scholar 

  • Shao-Cong Lai. (2007). Geochemistry and tectonic significance of the ophiolite associated volcanics in the Mianlue Suture, Qinling Orogenic belt, China. Journal-Geological Society of India, 70, 217–234.

    Google Scholar 

  • Shirley, D. N. (1987). Differentiation and compaction in the Palisades sill, New Jersey. Journal of Petrology, 28, 835–865.

    Article  Google Scholar 

  • Shuguang, L. (1993). Ba-Nb-Th-La diagrams used to identify tectonic environments of ophiolite. Acta Petrlogica Sinica, 9, 146–157.

    Google Scholar 

  • Sugimura, A. (1968). Spatial relations of basaltic magmas in island arcs. In H. Hess & A. Poldervaart (Eds.), Basalts 2 (pp. 537–571). New York: Interscience.

    Google Scholar 

  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of ocean basalts: Implication for mantle composition and processes. Geological Society, London, Special Publications, 42, 313–345.

    Article  Google Scholar 

  • Tarney, J., Saunders, A. D. & Weaver, S. D. (1977). Geochemistry of volcanic rocks from the island arcs and marginal basins of the Scotia Arc region. In M. Talwani & W. C. Pitman (Eds.), Island arcs, Deep sea trenches and back-arc basins (pp. 367–377). American Geophysical Union.

    Chapter  Google Scholar 

  • Thompson, R. N., Morrison, M. A., Hendry, G. L., & Parry, S. J. (1984). An assessment of the relative roles of a crust and mantle in magma genesis: An elemental approach. Philosophical Transactions of the Royal Society of London, A, 310, 549–590.

    Google Scholar 

  • Wilson, M. (1989/97). Igneous petrogenesis (a global tectonic approach). Chapman and Hall: London. 466 p.

    Google Scholar 

  • Wones, D. R., & Eugster, H. P. (1965). Stability of biotite: Experiment, theory, and application. American Mineralogist, 50, 1228–1272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikash Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhagat, V., Kumar, V. (2019). Genesis of Epidiorites Associated with Dhalbhum Formation of Proterozoic Singhbhum Basin. In: Mondal, M. (eds) Geological Evolution of the Precambrian Indian Shield. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-319-89698-4_18

Download citation

Publish with us

Policies and ethics