Advertisement

Geochemistry of Mafic–Felsic Rocks of Phulad Ophiolite, in and Around Pindwara-Mount Abu Region, South Delhi Fold Belt, NW Indian Shield: Implications for Its Tectonic Evolution

  • M. Shamim KhanEmail author
  • Roohi Irshad
  • Tavheed Khan
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

Aravalli Mountain Range is abruptly truncated along its western margin by a shear zone. There occurs a thick suite of mafic–ultramafic rocks along this shear zone referred to as Phulad ophiolite. This ophiolitic sequence has been in debate since the day of its nomenclature in the map of Geological Survey of India for the non-preservation of various members of an ophiolite suite. Present study suggests that all lithomembers of an ophiolite are present and well preserved in the area. With the help of systematic field mapping, a complete sequence has been reconstructed. New geochemical data in conjunction with published data affirms fore arc tectonic setting of this sequence.

Keywords

Ophiolite Phulad Aravalli mountain range 

Notes

Acknowledgements

The authors are thankful to the Chairman, Department of Geology, for providing necessary facilities in the department. Financial assistance provided by UGC, New Delhi, in the form of Major Research Project [F. No. 34-46/2008(SR)] to MSK is gratefully appreciated. MSK has personal and professional gratitude towards Prof. M. Raza, Department of Geology, AMU, for generating interest in igneous geochemistry. Discussions with Dr. Sadaf Fatima, Geologist, ONGC, Mumbai were of great help.

References

  1. Arndt, N. T. (1977). Ultrabasic magmas and high degree melting of the mantle. Contributions to Mineralogy and Petrology, 64, 205–221.CrossRefGoogle Scholar
  2. Balaram, V., Ramesh, S. L., & Anjaiah, K. V. (1996). New trace element and REE data in thirteen GSF reference samples by ICP-MS. Geostandards Newsletter, 20, 71–78.CrossRefGoogle Scholar
  3. Bedard, J. H. (1991). Cumulate recycling and crustal evolution in the Bay of Islands ophiolite. Journal of Geology, 99, 225–249.CrossRefGoogle Scholar
  4. Bedard, J. H. (1993). Oceanic crust as a reactive filter: Synkinematic intrusion, hybridization and assimilation in an ophiolitic magma chamber, western Newfoundland. Geology, 21, 77–80.CrossRefGoogle Scholar
  5. Bedard, J. H. (1999). Petrogenesis of boninites from the Betts Cove Ophiolite, Newfoundland, Canada: Identification of subducted source components. Journal of Petrology, 40, 1853–1889.CrossRefGoogle Scholar
  6. Berhe, S.M. (1990). Ophiolites in Northeast and East Africa: Implications for Proterozoic crustal growth. Journal of the Geological Society, 147 41–57.CrossRefGoogle Scholar
  7. Beswick, A. E. (1982). Some geological aspects of alteration and genetic relationship in komatitic suites. In N. T. Arndt & E. G. Nisbet (Eds.), Komatites (pp. 283–308). London: Allen and Unwin.Google Scholar
  8. Beswick, A. E., & Soucie, G. (1978). A correction procedure for metasomatism in an Archean greenstone belt. Precambrian Research, 6, 235–248.CrossRefGoogle Scholar
  9. Bhattacharjee, J., Golani, P. R., & Readdy, A. R. (1988). Rift relation biomodal volcanism and metallogeny in the Delhi Fold Belt, Rajasthan and Gujarat India. The Journal of Geology, 60, 191–199.Google Scholar
  10. Cameron, W.E., Nisbet, E.G., & Dietrich, V.J. (1979). Boninites, komatiites and ophiolitic basalts. Nature, 280 550–53.CrossRefGoogle Scholar
  11. Camire, G., La Fleche, M. R., & Jenner, G. A. (1995). Geochemistry of pre-Taconian mafic volcanism in Humber Zone of northern Appalachian. Chemical Geology, 119, 55–77.CrossRefGoogle Scholar
  12. Choudhary, A. K., Gopalan, K., & Sastry, C. A. (1984). Present status of geochronology of Precambrian rocks of Rajasthan. Tectonophysics, 105, 131–140.CrossRefGoogle Scholar
  13. Church, W. R. (1977). The ophiolites of southern Quebec: Oceanic crust of Betts Cove type. Canadian Journal of Earth Sciences, 14, 1668–1673.CrossRefGoogle Scholar
  14. Coleman, R.G. (1984). The diversity of ophiolites. Geologie en Mijnbouw, 63 141–150.Google Scholar
  15. Davies, J. F., Grant, R. W. E., & Whitehead, R. E. S. (1979). Immobile trace elements and Archaean volcanic stratigraphy in the Timmins mining area, Ontario, Canada. Earth Science, 16, 305–311.Google Scholar
  16. Deb, M., & Sarkar, S. C. (1990). Proterozoic tectonic evolution and metallogenesis in the Aravalli-Delhi orogenic complex, northwestern India. Precambrian Research, 46, 115–137.CrossRefGoogle Scholar
  17. Dilek, Y., & Furnes, H. (2011). Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123, 387–411.CrossRefGoogle Scholar
  18. Dilek, Y., Furnes, H., & Shallo, M. (2008). Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos, 100, 174–209.CrossRefGoogle Scholar
  19. Dilek, Y., & Thy, P. (2009). Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos, 113, 68–87.CrossRefGoogle Scholar
  20. Fatima, S., & Khan, M. S. (2012). Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: Implications for provenance, tectonic setting, and crustal evolution. International Geology Review, 54, 1113–1144.CrossRefGoogle Scholar
  21. Ghose, N., Chatterjee, N., & Fareeduddin. (2014). A petrographic atlas of ophiolite: An example from the eastern India—Asia collision zone (p. 234). Springer.CrossRefGoogle Scholar
  22. Gill, J. B. (1981). Orogenic andesites and plate tectonics (p. 358). Berlin: Springer.CrossRefGoogle Scholar
  23. Gopalan, K., Mac Dougall, J. D., Roy, A. B., & Murali, A. V. (1990). Sm-Nd evidence for 3.3 Ga old rocks in Rajasthan, northwestern India. Precambrian Research, 48, 287–292.CrossRefGoogle Scholar
  24. Gupta, P., Mukhopadhyay, K., Fareeduddin, & Reddy, M. S. (1991). Tectono-stratigraphic framework and volcanic geology of the south Delhi fold belt in central Rajasthan. Journal of the Geological Society of India, 37, 431–442.Google Scholar
  25. Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqbaluddin, B. P., Sahai, T. N., & Sharma, S. B. (1980). Lithostrtigraphic map of the Aravalli region, southern Rajasthan and northeastern Gujrat. Geological Survey of India, Scale, 1:1,000,000.Google Scholar
  26. Gupta, S. N., Arora, Y. K., Mathur, R. K., Iqbaluddin, B. P, Sahai, T. N., & Sharma, S. B. (1997). Memoir of geological survey of India (vol. 123, pp. 262).Google Scholar
  27. Hamatteh, Z. S. H., Raza, M., & Ahmad, T. (1994). Geochemistry of early Proterozoic mafic and ultramafic rocks of the Jharol group, Rajasthan, northwestern India. Journal of the Geological Society of India, 44, 141–156.Google Scholar
  28. Harper, G. D. (1985). Tectonics of slow spreading mid-ocean ridges and consequences of a variable depth to the brittle/ductile transition. Tectonics, 4, 395–409.CrossRefGoogle Scholar
  29. Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W., & van Calsteren, P. (1997). U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276, 551–555.CrossRefGoogle Scholar
  30. Helmstaedt, H. H., & Scott, D. J. (1992). The Proterozoic ophiolite problem. In K. C. Condie (Ed.), Proterozoic crustal evolution, development in Precambrian geology (Vol. 10, pp. 123– 124).CrossRefGoogle Scholar
  31. Heron, A. M. (1953). Geology of central Rajputana. Memoirs of the Geological Survey of India, 79, 1–389.Google Scholar
  32. Hickey, R. L., & Frey, F. A. (1982). Geochemical characteristics of boninite series volcanics: Implications for their source. Geochimica et Cosmochimica Acta, 46, 2099–2115.CrossRefGoogle Scholar
  33. Irvine, T. N., & Bargar, W. R. A. (1971). A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523–548.CrossRefGoogle Scholar
  34. Ishizuka, O., Tani, K., & Reagen, M. K. (2014). Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue. Elements, 10, 115–120.CrossRefGoogle Scholar
  35. Kapezhinskas, K. B. (1986). Structural-metamorphic evolution of late Proterozoic ophiolites and Precambrian basement in the central Asian fold belt of Monogolia. Precambrian Research, 33, 209–223.CrossRefGoogle Scholar
  36. Katzir, Y. Matthews, A., Garfunkel, Z., Schliested, M., & Avigad, D. (1995). The tectonometamorphic evolution of a dismembered ophiolite (Tinos, Cyclades, Greece). Geological Magazine, 133 237–254.CrossRefGoogle Scholar
  37. Kerrich, R. W., Wyman, D., Fan, J., & Bleeker, W. (1998). Boninite series: Low-Ti tholeiite associations from the 2.7 Ga Abitibi greenstone belt. Earth and Planetary Science Letters, 164, 303–316.CrossRefGoogle Scholar
  38. Khan, M. S., Smith, T. E., Raza, M., & Huang, J. (2005). Geology, geochemistry and tectonic significance of mafic ultramafic rocks of Mesoproterozoic Phulad Ophiolite Suite of south Delhi fold belt, NW Indian Shield. Gondwana Research, 8(4), 553–566.CrossRefGoogle Scholar
  39. Kim, J., & Jacobi, R. D. (2002). Boninites: characteristics and tectonic constraints, northeastern Appalachians. Physics and Chemistry of the Earth, 27, 109–147.CrossRefGoogle Scholar
  40. Kontinen, A. (1987). An early Proterozoic ophiolite—The Jormua mafic–ultramafic complex, N.E. Finland. Precambrian Research, 35, 313–341.CrossRefGoogle Scholar
  41. Lytwyn, J.N., & Casey, J.F. (1995). The geochemistry of post kinematic dyke swarms and subophiolitic metabasaites, Pozanti-Karsanti ophiolite Turkey: Evidence for ridge subduction. Geological Society of America Bulletin, 107 830–850.CrossRefGoogle Scholar
  42. Meijer, A. (1980). Primitive arc volcanism and a boninite series: Examples from the Western Pacific Island arcs. In: Hayer (Ed.), The tectonic evolution of Southeast Asian seas and islands, Amer. Geophys. Union: Geophys. Monograph.Google Scholar
  43. Moores, E. M. (1982). Origin and emplacement of ophiolite. Reviews of Geophysics Special Paper, 20, 735–760.CrossRefGoogle Scholar
  44. Moores, E. M. (1986). The Proterozoic ophiolite problem, continental emergence and Venus connection. Science, 234, 65–68.CrossRefGoogle Scholar
  45. Nakajima, K., & Arima, M. (1998). Melting experiments on hydrous low-K tholeiite: Implications for the genesis of tonalitic crust in the Izu-Bonin-Mariana arc. Island Arc, 7, 359–373.CrossRefGoogle Scholar
  46. Nesbitt, R. W., Sun, S. S., & Purvis, A. C. (1979). Komatites: Geochemistry and genesis. The Canadian Mineralogist, 17, 165–186.Google Scholar
  47. Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with application to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14–48.CrossRefGoogle Scholar
  48. Pearce, J. A. (2014). Immobile element fingerprinting of ophiolites. Elements, 10, 101–108.CrossRefGoogle Scholar
  49. Pearce, J. A., & Gale, D. M. (1977). Identification of ore deposition environment from trace element geochemistry. Geological Society, London, Special Publications, 7, 14–29.CrossRefGoogle Scholar
  50. Pearce, J. A. (1983). Role of sub-continental lithosphere in magma genesis at active continental margins. In C. J. Hawkesworth & M. J. Norry (Eds.), Continental basalts and mantle xenoliths (pp. 230–249). Nantwich: Shiva.Google Scholar
  51. Pearce, J. A., & Peate, D. W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23, 251–285.CrossRefGoogle Scholar
  52. Pearce, J.A., Lippard, S.J., & Roberts, S. (1984). Characteristics and tectonic significance of supra subduction zone ophiolites. In: Kokelaar, B.P. and Howells, M.F. (Eds.), Marginal basin geology, Geological Society of London, Spec. Pub. 16, pp. 77–94.CrossRefGoogle Scholar
  53. Roy, A. B. (1988). Stratigraphic and tectonic framework of the Aravalli mountain range. Memoir-Geological Survey of India, 7, 3–31.Google Scholar
  54. Roy, A. B., & Jakhar, S. R. (2002). Geology of Rajasthan (Northwestern India): Precambrian to recent (p. 421). Jodhpur: Scientific Publication (India).Google Scholar
  55. Schroetter, J. M., Page, P., Bedard, J. H., Tremblay, A., & Becu, V. (2003). Forearc extension and seafloor spreading in the Thetford Mines Ophiolite complex. Geological Society, Special Publications, 218, 231–251.CrossRefGoogle Scholar
  56. Sen, S. (1981). Proterozoic paleotectonics of the evolution of crust and the location of metalliferous deposits, Rajasthan. The Quarterly Journal of the Geological, Mining and Metallurgical Society of India, 53, 162–185.Google Scholar
  57. Sharma, R. S. (1988). Patterns of metamorphism in the Precambrian rocks of the Aravalli mountain belt. In A. B. Roy (Ed.), Precambrian of the Aravalli Mountain, Rajasthan (Vol. 7, pp. 33–76). Memoirs of the Geological Survey of India.Google Scholar
  58. Shervais, J. W. (2001). Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems, 2, paper no. 2000GC000080.CrossRefGoogle Scholar
  59. Sinha-Roy, S. (1988). Wilson cycle in Rajasthan. Memoirs—Geological Society of India, 7, 128–137.Google Scholar
  60. Sinha-Roy, S. (1984). Precambrian crustal interaction in Rajasthan, NW India. In: Proceedings of the Seminar on Crustal Evolution of Indian Shield and its Bearing on Metallogeny. Indian Journal of Earth Sciences, pp. 84–91.Google Scholar
  61. Smith, T. E., & Harris, M. J. (1996). The Queensborough maficultramafic complex: A fragment of a Meso-Proterozoic ophiolite? Grenville Province, Canada. Tectonophy, 265, 53–82.CrossRefGoogle Scholar
  62. St. Onge, M. R., Lucas, S. B., Scott, D. J., Begin, N. J., Helmstaedt, H. H., & Carmichael, D. M. (1988). Thin skinned imbrications and subsequent thick skinned folding of rift-fill, transitional crust and ophiolite suites in the 1.9 Ga Cape Smith Belt, N. Quebec. In Geological Survey of Canada, Paper no. 88-1C, pp. 1–18.Google Scholar
  63. Stern, R. J., & Bloomer, S. H. (1992). Subduction zone infancy: Examples from the Eocene IzuBonin-Mariana and Jurassic California arcs. Geological Society of America Bulletin, 104, 1621–1636.CrossRefGoogle Scholar
  64. Sudgen, T. J., Deb, M., & Windley, B. F. (1990). The tectonic setting of mineralization in the Proterozoic Aravalli—Delhi orogenic belt, NW India. In S. M. Naqvi (Ed.), Precambrian continental crust and its economic resources (pp. 367–390). New York: Elsevier.Google Scholar
  65. Sudgen, T. J., & Windley, B. F. (1984). Geotectonic framework of the early-mid Proterozoic Aravalli-Delhi orogenic belt Northwestern, India (Vol. 9, pp. 109). Geological Association of Canada, Program with Abstract.Google Scholar
  66. Sun, S. S., & Nesbitt, R. W. (1978). Petrogensis of Archean ultrabasic and basic volcanics: Evidence from rare earth elements. Contributions to Mineralogy and Petrology, 65, 301–325.CrossRefGoogle Scholar
  67. Sychanthavong, S. P. H., & Desai, S. D. (1977). Proto-plate tectonics controlling The Precambrian deformations and metallogenic epochs in northwestern India. Mineralogy Science and Engineering, 9, 218–236.Google Scholar
  68. Thompson, M.G., Malpas, J., & Smith, I.E.M. (1997). The geochemistry of tholeiitic and alkalic plutonic suites within Northland ophiolite, northern New Zealand: magmatism in a back arc basin. Chemical Geology, 142 213–239.Google Scholar
  69. Volpe, A.M., & MacDougall, J.D. (1990). Geochemistry and isotope characteristics of mafic (Phulad Ophiolite) and related rocks in the Delhi Supergroup, Rajasthan, India: implication for rifting in the Proterozoic. Precambrian Research, 48 167–191.CrossRefGoogle Scholar
  70. Wiedenbeck, M., Goswami, J. N., & Roy, A. R. (1996). Stabilization of the Aravalli craton of northwestern India at 2.5 Ga and ion microprobe zircon study. Chemical Geology, 129, 325–340.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeologyAligarh Muslim UniversityAligarhIndia

Personalised recommendations