Advertisement

Geochemical Constraints on the Petrogenesis of the Metasedimentary Rocks Forming the Basement of the Shillong Plateau, Northeast India

  • M. Faruque HussainEmail author
  • V. Vanthangliana
  • M. E. A. Mondal
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

Granite gneisses, cordierite bearing granulitic gneisses (pelitic gneisses) and quartz-sillimanite schists (pelitic schists) comprise the Precambrian metamorphic basement complex of the Shillong plateau. Pelitic gneisses and pelitic schists were geochemically studied to determine the paleoweathering conditions and provenance characteristics of their precursor sediments. The chemical indices of alteration and weathering (CIA and CIW) values of the pelitic gneisses vary from 62 to 84 and from 74 to 96 respectively, which indicate a moderate to extremely weathered precursor that was formed probably in a warm and humid climate. The pelitic schists are characterized by CIA and CIW values that range from 99.2 to 99.6 indicating the schists probably had extremely weathered precursor(s).Chondrite normalized rare earth elements (REE) patterns of the rock suites display highly fractionated REE patterns along with prominent negative Eu anomaly [pelitic gneisses: LaN/YbN = 19.7 − 81.7, Eu/Eu* = 0.17 − 0.68; pelitic schist: LaN/YbN = 27.4 − 43.7, Eu/Eu* = 0.15 − 0.32]. Post-Archean Australian Shale (PAAS) normalized multi-element diagram for the pelitic gneisses exhibits enrichment of Nb, Th, Ce, La, Ba, K, Rb with strong depletion of Zr and Sr., suggesting precursor sediments were rich in clay fractions. The pelitic schists however exhibit a highly fractionated trend with enrichment of Zr, Th, Ce and La and depletion of P, Nb, Ti, Y, Sr, Ba, K and Rb relative to PAAS. The geochemical characteristics of both the rock types thus suggest that the precursor sediments were derived from felsic sources; however, those for the schists were derived from a recycled felsic source.

Keywords

Geochemistry Basement metasedimentary rocks Shillong plateau Northeast india 

Notes

Acknowledgements

We express our sincere thanks to the Director, NGRI, Hyderabad for providing lab facilities for geochemical analysis. V.V. thankfully acknowledges the Research Fellowship of UGC, Ministry of HRD, Govt. of India. We thank Dr. J. Madhavaraju for his critical reviews and suggestions which improved the quality of the manuscript.

References

  1. Armstrong-Altrin, J. S. (2009). Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexíco. Revista Mexicana de Ciencias Geológicas, 26(3), 764–782.Google Scholar
  2. Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., & Ramasamy, S. (2004). Geo-chemistry of sandstones from the upper Miocene Kudankulam formation, southern India: Implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74, 285–297.CrossRefGoogle Scholar
  3. Armstrong-Altrin, J. S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y. I., Balaram, V., et al. (2013). Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango region, Hidalgo, Eastern Mexico: Implications of source-area weathering, provenance, and tectonic setting. Comptes Rendus Geoscience, 345, 185–202.CrossRefGoogle Scholar
  4. Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627.CrossRefGoogle Scholar
  5. Bhatia, M. R. (1985). Rare earth element geochemistry of Australian Paleozoic graywackes and mud rocks: Provenance and tectonic control. Sedimentary Geology, 45, 97–113.CrossRefGoogle Scholar
  6. Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.CrossRefGoogle Scholar
  7. Bilham, R., & England, P. (2001). Plateau ‘pop-up’ in the great Assam earthquake. Nature, 410, 806–809.CrossRefGoogle Scholar
  8. Bolhar, R., Kamber, B. S., Mooebath, S., Whitehouse, M. J., & Collerson, K. D. (2005). Chemical characterization of earth’s most ancient clastic metasediments from the Isua Greenstone belt, southernwest Greenland. Geochimica et Cosmochimica Acta, 69, 1555–1573.CrossRefGoogle Scholar
  9. Chatterjee, N., Mazumdar, A. C., Bhattacharya, A., & Saikia, R. R. (2007). Mesoproterozoic granulites of the Shillong-Meghalaya Plateau: Evidence of westward continuation of the Prydz Bay Pan-African suture into Northeastern India. Precambrian Research, 152, 1–26.CrossRefGoogle Scholar
  10. Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1–37.CrossRefGoogle Scholar
  11. Cullers, R. L. (1994). The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58, 4955–4972.CrossRefGoogle Scholar
  12. Cullers, R. L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51, 181–203.CrossRefGoogle Scholar
  13. Cullers, R. L., & Podkovyrov, V. N. (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Research, 104, 77–93.CrossRefGoogle Scholar
  14. Deepthi, K., Natesan, U., Muthulakshmi, A. L., Ferrer, V. A., Venugopalan, V. P., & Narasimhan, S. V. (2012). Geochemical characteristics and depositional environment of Kalpakkam, Southeast coast of India. Environmental Earth Sciences, 69(7), 2357–2364.CrossRefGoogle Scholar
  15. Desikachar, S. V. (1974). A review of the tectonic and geological history of eastern India in terms of plate tectonics theory. Journal of the Geological Society of India, 15, 137–149.Google Scholar
  16. Elueze, A. A. (1981). Dynamic metamorphism and oxidation of amphibolites, Tegina area, north western Nigeria. Precambrian Research, 14, 368–379.CrossRefGoogle Scholar
  17. Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.CrossRefGoogle Scholar
  18. Fedo, C. M., Eriksson, K., & Krogstad, E. J. (1996). Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone belt, Zimbabwe: Implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta, 60, 1751–1763.CrossRefGoogle Scholar
  19. Gao, S., Ling, W. L., Qiu, Y. M., Lian, Z., Hartmann, G., & Simon, K. (1999). Contrasting geochemical and Sm–Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta, 63, 2071–2088.CrossRefGoogle Scholar
  20. Garcia, D., Fonteilles, M., & Moutte, J. (1994). Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. Journal of Geology, 102, 411–422.CrossRefGoogle Scholar
  21. Garrels, R. M. & Mackenzie, F. T. (1971). Evolution of sedimentary rocks. New York: W. Norton and Co. 397p.Google Scholar
  22. Ghosh, S., Sarkar, S., & Ghosh, P. (2012). Petrography and major element geochemistry of the Permo-Triassic sandstones, central India: Implications for provenance in an intracratonic pull-apart basin. Journal of Asian Earth Sciences, 43, 207–240.CrossRefGoogle Scholar
  23. Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55, 319–322.CrossRefGoogle Scholar
  24. Hayashi, K. I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 16, 4115–4137.CrossRefGoogle Scholar
  25. Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829.Google Scholar
  26. Higgins, N. C., Solomon, M., & Varne, R. (1985). The genesis of the Blue Tier Batholith, northeastern Tasmania, Australia. Lithos, 18, 129–149.CrossRefGoogle Scholar
  27. Joo, Y. J., Lee, Y., & Bai, Z. Q. (2005). Provenance of the Qingshuijian formation (Late Carboniferous), NE China: Implications for tectonic processes in the northern margin of the North China block. Sedimentary Geology, 177(1–2), 97–114.CrossRefGoogle Scholar
  28. Krishna, A. K., Murthy, N. N., & Govil, P. K. (2007). Multielement analysis of soils by WD-XRF spectrometry. Atomic Spectroscopy, 28(6), 202–214.Google Scholar
  29. Long, X., Sun, M., Yuan, C., Xiao, W., & Cai, K. (2008). Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sedimentary Geology, 208, 88–100.CrossRefGoogle Scholar
  30. Long, X., Yuan, C., Sun, M., Xiao, W., Wang, Y., Cai, K., et al. (2012). Geochemistry and Nd isotopic composition of the early Paleozoic flysch sequence in the Chinese Altai, central Asia: Evidence for a northward-derived mafic source and insight into Nd model ages in accretionary orogen. Gondwana Research, 22, 554–566.CrossRefGoogle Scholar
  31. Madhavaraju, J. (2015). Geochemistry of late cretaceous sedimentary rocks of the Cauvery basin, South India: Constraints on paleoweathering, provenance and end Cretaceous environments. In M. Ramkumar (Ed.), Chemostratigraphy: Concepts, Techniques and Applications (1st ed., pp. 185–214). Netherlands: Elsevier.CrossRefGoogle Scholar
  32. Madhavaraju, J., & Lee, Y. I. (2010). Influence of Deccan volcanism in the sedimentary rocks of Late Maastrichtian-Danian age of Cauvery basin Southeastern India: Constraints from geochemistry. Current Science, 98, 528–537.Google Scholar
  33. Madhavaraju, J., & Ramasamy, S. (2001). Clay mineral assemblages and rare earth element distribution in the sediments of Ariyalur Group, Tiruchirapalli District, Tamil Nadu- Implication for Paleoclimate. Journal of the Geological Society of India, 58, 69–77.Google Scholar
  34. Madhavaraju, J., Erik Ramírez-Montoya, E., Monreal, R., González-León, C. M., Pi-Puig, T., Espinoza-Maldonado, I. G., et al. (2016a). Paleoclimate, paleoweathering and paleoredox conditions of lower Cretaceous shales from the Mural Limestone, Tuape section, northern Sonora, Mexico: Constraints from clay mineralogy and geochemistry. Revista Mexicana de Ciencias Geológicas, 33, 34–48.Google Scholar
  35. Madhavaraju, J., Tom, M., Lee, Y. I., Balaram, V., Ramasamy, S., Carranza-Edwards, A., et al. (2016b). Provenance and tectonic settings of sands from Puerto Peñasco, Desemboque and Bahia Kino beaches, Gulf of California, Sonora, Mexico. Journal of South American Earth Sciences, 71, 262–275.CrossRefGoogle Scholar
  36. Mazumder, S. K. (1976). A summary of the Precambrian geology of the Khasi Hills, Meghalaya (Vol. 23, pp. 311–324). Geological Survey of India, Miscellaneous Publications.Google Scholar
  37. McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In B. R. Lipin & G. A. McKay (Eds.), Geochemistry and mineralogy of rare earth elements (Vol. 21, pp. 169–200). Mineralogical Society of America (Reviews in Mineralogy).Google Scholar
  38. McLennan, S. M., Taylor, S. R., McCulock, M. T., & Maynard, J. B. (1990). Geochemical and Nd–Sr isotopic composition of deep sea turbidites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54, 2015–2050.CrossRefGoogle Scholar
  39. McLennan, S. M., Hemming, S., McDaniel, D. K. & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. In M. J. Johnsson & A. Basu (Eds.), Processes controlling the composition of clastic sediments (pp. 21–40). Geological Society of America, Special Papers 284.CrossRefGoogle Scholar
  40. McLennan, S. M., Hemming, S. R., Taylor, S. R., & Eriksson, K. A. (1995). Early Proterozoic crustal evolution: Geochemical and Nd–Pb isotopic evidence from metasedimentary rocks, southwestern North America. Geochimica et Cosmochimica Acta, 59, 1153–1177.CrossRefGoogle Scholar
  41. McLennan, S. M., Simonetti, A., & Goldstein, S. L. (2000). Nd and Pb isotopic evidence for provenance and post-depositional alteration of the Paleoproterozoic Huronian Supergroup, Canada. Precambrian Research, 102, 263–278.CrossRefGoogle Scholar
  42. Nagarajan, R., Madhavaraju, J., Nagendra, R., Armstrong-Altrin, J. S., & Moutte, J. (2007). Geochemistry of Neoproterozoic shales of Rabanpalli formation, Bhima basin, northern Karnataka, southern India: Implications for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geologicas, 24, 150–160.Google Scholar
  43. Nance, W. B., & Taylor, S. R. (1976). Rare earth element patterns and crustal evolution I: Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta, 40, 1539–1551.CrossRefGoogle Scholar
  44. Nandy, D. R. & DasGupta, S. (1986). Application of remote sensing in regional studies—A case study in Northeastern part of India. In Proceedings of the International Seminar on Photogrammetry and Remote Sensing for Developing Countries (Vol. 1, pp. T.4-P/6.1-T.4-P/6.4).Google Scholar
  45. Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions Inferred from major element chemistry of Lulites. Nature, 29, 715–717.CrossRefGoogle Scholar
  46. Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based upon thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1523–1534.CrossRefGoogle Scholar
  47. Nesbitt, H. W., & Young, G. M. (1989). Formation and diagenesis of weathering profiles. The Journal of Geology, 97, 129–147. CrossRefGoogle Scholar
  48. Pollard, P. J., Millburn, D., Taylor, R. G. & Cuff, C. (1983). Mineralogical and textural modifications in granites associated with tin mineralisation, Herberton-Mt Garnet Tin field, Queensland. In Permian Geology of Queensland Brisbane (pp. 413–430). Geological Society of Australia, Queensland Division.Google Scholar
  49. Ramachandran, A., Madhavaraju, J., Ramasamy, S., Lee, Y. I., Rao, S., Chawngthu, D. L., et al. (2016). Geochemistry of Proterozoic clastic rocks of the Kerur formation of Kaladgi-Badami basin, North Karnataka, South India: Implications for paleoweathering and provenance. Turkish Journal of Earth Sciences, 25, 126–144.CrossRefGoogle Scholar
  50. Roser, B. P., Coombs, D. S., Korsch, R. J., & Campbell, J. D. (2002). Whole-rock geochemical variations and evolution of the arc-derived Murihiku Terrane, New Zealand. Geological Magazine, 139(6), 665–685.CrossRefGoogle Scholar
  51. Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119–139.CrossRefGoogle Scholar
  52. Roy, P., Balaram, V., & Kumar, A. (2007). New REE and trace element data on two kimberlitic reference materials by ICP-MS. Geostandards and Geoanalytical Research, 31, 261–273.CrossRefGoogle Scholar
  53. Roy, P., Balaram, V., Krishna, A. K., Singh, R. S., Chavan, C. D., Charan, S. N., et al. (2009). A Simplified and rapid method for the determination of sulphur in kimberlites and other geological samples by wavelength-dispersive x-ray fluorescence spectrometry. Atomic Spectroscopy, 30(5), 178–183.Google Scholar
  54. Srivastava, R. K., & Sinha, A. K. (2004). The Early Cretaceous Sung Valley ultramafic–alkaline–carbonatite complex, Shillong Plateau, northeastern India: Petrological and genetic significance. Mineralogy and Petrology, 80, 241–263.CrossRefGoogle Scholar
  55. Stumm, W., & Morgan, J. J. (1981). Aquatic chemistry: A prologue emphasizing chemical equilibrium in natural waters. John Wiley and Sons, New York, 780 p.Google Scholar
  56. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes. In A. D. Saunders & M. J. Norry (Eds.), Magmatism in the Ocean basins (Vol. 42, pp. 313–345). Geological Society of London, Special Publications.CrossRefGoogle Scholar
  57. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell Scientific Publications.Google Scholar
  58. Taylor, R. G., & Pollard, P. J. (1988). Pervasive hydrothermal alteration in tin bearing granites and implications for the evolution of ore bearing fluids. In R. P. Taylor & D. F. Strong (Eds.), Recent advances in the geology of the granite related mineral deposits (pp. 86–95). Quebec: Canadian Institute of mining and Metallurgy.Google Scholar
  59. Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51, 240–2416.CrossRefGoogle Scholar
  60. Yan, Z., Wang, Z., Yan, Q., Wang, T., & Guo, X. (2012). Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling mountains, central China: Implications for the tectonic evolution of the Qinling Orogenic belt. Journal of Sedimentary Research, 82, 9–24.CrossRefGoogle Scholar
  61. Yin, A., Dubey, C. S., Wedd, A. A. G., Kelty, T. K., Grove, M., Gehrels, G. E., et al. (2010). Geologic correlation of the Himalayan orogen and Indian craton: Part I. Structural geology, U-Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India. GSA Bulletin, 122(3/4), 336–359.CrossRefGoogle Scholar
  62. Young, G. M., & Nesbitt, H. W. (1998). Process controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Sedimentary Research, 68, 448–455. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • M. Faruque Hussain
    • 1
    Email author
  • V. Vanthangliana
    • 2
  • M. E. A. Mondal
    • 3
  1. 1.Department of Earth ScienceAssam UniversitySilcharIndia
  2. 2.Pachhunga University CollegeMizoram UniversityAizawlIndia
  3. 3.Department of GeologyAligarh Muslim UniversityAligarhIndia

Personalised recommendations