Geochemical and Nd Isotopic Studies of the Neoarchaean-Palaeoproterozoic Granitoids of the Aravalli Craton, NW India: Evidence for Heterogeneous Crustal Evolution Processes

  • Md. Sayad RahamanEmail author
  • M. E. A. Mondal
  • Iftikhar Ahmad
  • R. Bhutani
  • A. K. Choudhary
Part of the Society of Earth Scientists Series book series (SESS)


Whole-rock Sm–Nd isotope and elemental geochemistry of the Neoarchaean to Palaeoproterozoic granitoids (NPG) of the Aravalli Craton, northwestern India have been presented to decipher its source(s) and its implications for crustal evolution processes. Based on petrography and geochemistry, we have classified the NPG into two suites viz.: (i) high-Mg granitoids (HMG); and (ii) K-rich granitoids (HKG). Both the suites show negative Nb and Ti anomalies, and magnesian characteristics indicating their origin in an arc setting. The HMG suite is calc-alkaline in nature exhibiting low and restricted SiO2-content (avg. 66.6 wt%); high contents of MgO (avg. 1.83 wt%), Ni, Cr and large ion lithophile elements (LILE; Sr, Ba, K) along with high (La/Yb)N ratios; low Sr/Y ratios and negative Eu anomaly (avg. 0.8). These features point towards a sanukitoid-type magmatism for the origin of the HMG suite. Further, negative εNd(t) values (−1.6 to −5.5) attest this mechanism involving a LILE-enriched mantle source. On the other hand, the HKG suite exhibits high contents of SiO2 (avg. 75 wt%), K2O (avg. 5 wt%), Th and Pb, high (La/Yb)N ratios and lower contents of MgO, Na2O, Cr, and Ni along with variable εNd(t) values and older Nd model ages (avg. 2.69 Ga). Altogether, these characteristics suggest that the HKG suite probably formed by the re-melting of heterogeneous older crust.


Aravalli craton Nd isotope Geochemistry Neoarchaean granitoids Crustal evolution 



We thank the Chairperson, Department of Geology, Aligarh Muslim University, Aligarh, Head, Department of Geology, Presidency University, Kolkata and Head, Department of Earth Sciences, Pondicherry University, Puducherry for providing the necessary facilities to carry out this work. We are thankful to three reviewers Prof. Rajesh K. Srivastava, Dr. Debajyoti Paul and Dr. M. Ram Mohan for their constructive and critical reviews that helped us to improve the final version of this manuscript. Authors are also thankful to the Director, Wadia Institute of Himalayan Geology and Director, CSIR-National Institute of Oceanography, Goa for providing instrumental facility for geochemical analysis. MSR and IA express sincere thanks to the University Grants Commission (UGC), New Delhi for UGC-BSR Fellowship and UGC-Senior Research Fellowship, respectively.


  1. Ahmad, T., & Tarney, J. (1994). Geochemistry and petrogenesis of late Archaean Aravalli volcanics, basement enclaves and granitoids, Rajasthan. Precambrian Research, 65, 1–23.CrossRefGoogle Scholar
  2. Ahmad, I., Mondal, M. E. A., & Satyanarayanan, M. (2016a). Geochemistry of Archean metasedimentary rocks of the Aravalli craton, NW India: Implications for provenance, paleoweathering and supercontinent reconstruction. The Journal of Asian Earth Sciences, 126, 58–73.CrossRefGoogle Scholar
  3. Ahmad, I., & Mondal, M. E. A. (2016b). Do the BGC-I and BGC-II domains of the Aravalli Craton, northwestern India represent accreted terranes? Earth Science India, 9(IV), pp. 167–75.Google Scholar
  4. Ahmad, I., Mondal, M. E. A., & Satyanarayanan, M. (2017). Archean TTG magmatism in the Aravalli craton, NW India: Petrogenetic and geodynamic constraints. Geological evolution of Precambrian Indian shield, Society of Earth Scientists Series. Switzerland: Springer International Publishing.Google Scholar
  5. Allen, P., Condie, K., & Bowling, G. (1986). Geochemical characteristics and possible origins of the Southern Closepet batholith, South India. Journal of Geology, 94, 283–299.CrossRefGoogle Scholar
  6. Almeida, J. A. C., Dall’Agnol, R., Dias, S. B., & Althoff, F. J. (2010). Origin of the Archean leucogranodiorite–granite suites: Evidence from the Rio Maria. Lithos, 120, 235–257.CrossRefGoogle Scholar
  7. Anand, R., & Balakrishnan, S. (2010). Pb, Sr and Nd isotope systematics of metavolcanic rocks of the Hutti greenstone belt, Eastern Dharwar craton: Constraints on age, duration of volcanism and evolution of mantle sources during Late Archean. The Journal of Asian Earth Sciences, 39, 1–11.CrossRefGoogle Scholar
  8. Barker, F. (1979). Trondhjemite: Definition, environment, and hypotheses of origin. In F. Barker (Ed.), Trondhjemites, dacites, and related rocks (pp. 1–12). Amsterdam: Elsevier.Google Scholar
  9. Barker, F., & Arth, J. G. (1976). Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4, 596–600.CrossRefGoogle Scholar
  10. Bullen, T. D., & Clynne, M. A. (1990). Trace element and isotopic constraints on magmatic evolution at Lassen volcanic center. Journal of Geophysical Research, 95, 19671–19691.CrossRefGoogle Scholar
  11. Carroll, M. J., & Wyllie, P. J. (1989). Experimental phase relations in the system tonalite-peridotite-H2O at 15 kb; implications for assimilation and differentiation processes near the crust mantle boundary. Journal of Petrology, 30, 351–1382.CrossRefGoogle Scholar
  12. Chandra Sekaran, M., Bhutani, R., & Balakrishnan, S. (2016). Rb–Sr and Sm–Nd study of granite-charnockite association in the Pudukkottai region and the link between metamorphism and magmatism in the Madurai Block. Journal of Earth System Science, 125, 605–622.CrossRefGoogle Scholar
  13. Choudhary, A. K., Gopalan, K., & Sastry, C. A. (1984). Present status of geochronology of the Precambrian rocks of Rajasthan. Tectonophysics, 105, 131–140.CrossRefGoogle Scholar
  14. Condie, K. C., Bowling, G. P., & Allen, P. (1985). Origin of granites in Archaean high grade terrain, southern India. Contributions to Mineralogy and Petrology, 92, 92–103.Google Scholar
  15. Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662–665.CrossRefGoogle Scholar
  16. Dey, S., Gajapathi Rao, R., Gorikhan, R. A., Veerabhaskar, D., Kumar, S., & Kumar, M. K. (2003). Geochemistry and origin of northern Closepet Granite from Gudur to Guledagudda area, Bagalkot district, Karnataka. The Journal of the Geological Society of India, 62, 152–168.Google Scholar
  17. Dey, S., Pandey, U. K., Rai, A. K., & Chaki, A. (2012). Geochemical and Nd isotope constraints on petrogenesis of granitoids from NW part of the eastern Dharwar craton: Possible implications for late Archaean crustal accretion. The Journal of Asian Earth Sciences, 45, 40–56.CrossRefGoogle Scholar
  18. Evans, O. C., & Hanson, G. N. (1992). Most Neoarchaean tonalites, trondhjemites and granodiorites (TTG) in the superior Province were derived from mantle melts, not melting basalts. Transactions. American Geophysical Union, 73, 14–330.CrossRefGoogle Scholar
  19. Frost, B. R., Arculus, R. J., Barnes, C. G., Collins, W. J., Ellis, D. J., & Frost, C. D. (2001). A geochemical classification of granitic rocks. Journal of Petrology, 42, 2033–2048.CrossRefGoogle Scholar
  20. Gopalan, K., Mc Dougall, J. D., Roy, A. B., & Murali, A. V. (1990). Sm–Nd evidence of 3.3 Ga old rocks in Rajasthan, northwestern India. Precambrian Research, 48, 287–297.CrossRefGoogle Scholar
  21. Gupta, B. C. (1934). The geology of central Mewar, Rajputana. Memoirs of the Geological Survey of India, 65, 107–169.Google Scholar
  22. Halla, J., van Hunen, J., Heilimo, E., & Holtta, P. (2009). Geochemical and numerical constraints on Neoarchean plate tectonics. Precambrian Research, 174, 155–162.CrossRefGoogle Scholar
  23. Heilimo, E., Mikkola, P., & Halla, J. (2007). Age and petrology of the Kaapinsalmi sanukitoid intrusion in Suomussalmi, eastern Finland. Bulletin of the Geological Society of Finland, 79, 117–125.CrossRefGoogle Scholar
  24. Heilimo, E., Halla, J., & Holtta, P. (2010). Discrimination and origin of the sanukitoid series: Geochemical constraints from the Neoarchean western Karelian Province (Finland). Lithos, 115, 27–39.CrossRefGoogle Scholar
  25. Heron, A. M. (1953). The geology of central Rajputana. Memoirs of the Geological Survey of India, 79, 1–389.Google Scholar
  26. Jayananda, M., Moyen, J. F., Martin, H., Peucat, J. J., Auvray, B., & Mahabaleswar, B. (2000). Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: Constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Research, 99, 225–254.CrossRefGoogle Scholar
  27. Jayananda, M., Chardon, D., Peucat, J. J., Capdevila, R., & Martin, H. (2006). 2.61 Ga potassic granites and crustal reworking, Western Dharwar craton (India): Tectonic, geochronologic and geochemical constraints. Precambrian Research, 150, 1–26.CrossRefGoogle Scholar
  28. Khanna, P. P., Saini, N. K., Mukherjee, P. K., & Purohit, K. K. (2009). An appraisal of ICP-MS technique for determination of REEs: Long term QC assessment of silicate rock analysis. Himalayan Geology, 30(1), 95–99.Google Scholar
  29. Laurent, O., & Zeh, A. (2015). A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: Example from the Pietersburg block (South Africa). Earth and Planetary Science Letters, 430, 326–338.CrossRefGoogle Scholar
  30. Laurent, O., Martin, H., Moyen, J. F., & Doucelanc, R. (2014). The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos, 205, 208–235.CrossRefGoogle Scholar
  31. Manikyamba, C., Ganguly, S., Santosh, M., Saha, A., & Lakshminarayana, G. (2015). Geochemistry and petrogenesis of Rajahmundry trap basalts of Krishna-Godavari Basin, India. Geoscience Frontiers, 6(3), 437–451.CrossRefGoogle Scholar
  32. Martin, H. (1986). Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9), 753–756.CrossRefGoogle Scholar
  33. Martin, H. (1987). Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: Major and trace element geochemistry. Journal of Petrology, 28(5), 921–953.CrossRefGoogle Scholar
  34. Martin, H. (1993). The mechanisms of petrogenesis of the Archaean continental crust—comparison with modern processes. Lithos, 30(3–4), 373–388.CrossRefGoogle Scholar
  35. Martin, H. (1994). The Archean grey gneisses and the genesis of the continental crust. In K. C. Condie (Ed.), The Archean crustal evolution, developments in Precambrian Geology (pp. 205–259). Amsterdam: Elsevier.CrossRefGoogle Scholar
  36. Martin, H., Smithies, R., Rapp, R., Moyen, J., & Champion, D. (2005). An overview of adakite, tonalite-Trondhjemite-Granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79, 1–24.CrossRefGoogle Scholar
  37. Mohan, M. R., Piercey, S. J., Kamber, B. S., & Sarma, D. S. (2013). Subduction related tectonic evolution of the Neoarchean eastern Dharwar Craton, southern India: New geochemical and isotopic constraints. Precambrian Research, 227, 204–226.CrossRefGoogle Scholar
  38. Mondal, M. E. A., & Raza, A. (2013). Geochemistry of sanukitoid series granitoids from the Neoarchaean Berach granitoid batholiths, Aravalli Craton, Northwestern Indian shield. Current Science, 105, 102–108.Google Scholar
  39. Mondal, M. E. A., & Zainuddin, S. M. (1996). Evolution of the Archean-Palaeoproterozoic Bundelkhand Massif, central India—evidence from granitoid geochemistry. Terra Nova, 8, 532–539.CrossRefGoogle Scholar
  40. Moyen, J. F., Martin, H., & Jayananda, M. (2001). Multi-element geochemical modelling of crust–mantle interactions during late-Archaean crustal growth: The Closepet granite (South India). Precambrian Research, 112, 87–105.CrossRefGoogle Scholar
  41. Moyen, J. F., Martin, H., Jayananda, M., & Auvray, B. (2003). Late Archaean granites: A typology based on the Dharwar Craton (India). Precambrian Research, 127, 103–123.CrossRefGoogle Scholar
  42. Newton, R. (1990). Fluids and melting in the Archean deep crust of South India. In L. Ashworth & M. Brown (Eds.), High temperature metamorphism and crustal Anatexis. London: Unmin Hyman.Google Scholar
  43. O’Connor, J. T. (1965). A classification for quartz-rich igneous rocks based on feldspar ratio. U.S. Geological Survey Professional Paper, 525(B), 79–84.Google Scholar
  44. Patino Douce, A. E. (1999). What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In A. Castro, C. Fernandez, & J. L. Virgneressese (Eds.), Understanding granites: Integrating new and classical techniques (Vol. 168, pp. 55–75). London: The Geological Society London Special Publications.Google Scholar
  45. Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.CrossRefGoogle Scholar
  46. Querré, G. (1985). Palingenèse de la croûte continentale àl’Archéen: les granitoїdes tardifs (2.5–2.4 Ga) de Finlande Orientale. Pétrologie et Géochimie. Mém Doc Centre Arm Et Struct Socles, 2, 226.Google Scholar
  47. Rapp, P. R. (1997). Heterogeneous source regions for Archaean granitoids: Experimental and geochemical evidence. In M. J. de Wit & L. D. Ashwal (Eds.), Greenstone belts (pp. 267–279). New York: Clarendon Press.Google Scholar
  48. Rahaman, M. S., & Mondal, M. E. A. (2013). Geochemistry and petrogenesis of the Archaean Tonalite-Trondhjemite-Granodiorite (TTG) and calc-alkaline granitoids of the Aravalli craton, northwestern Indian shield: Implications for the crustal evolution. Gondwana Geological Magazine, 28, 1–10.Google Scholar
  49. Rahaman, M. S., & Mondal, M. E. A. (2015). Evolution of continental crust of the Aravalli craton, NW India, during the Neoarchaean-Palaeoproterozoic: Evidence from geochemistry of granitoids. International Geology Review, 57, 1510–1525.CrossRefGoogle Scholar
  50. Roberts, M. P., & Clemens, J. D. (1993). Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, 21, 825–828.CrossRefGoogle Scholar
  51. Roy, A. B., & Jakhar, S. R. (2002). Geology of Rajasthan (Northwest India)—Precambrian to recent. Jodhpur (India): Scientific Publishers.Google Scholar
  52. Roy, A. B., & Kroner, A. (1996). Single zircon evaporation ages constraining the growth of the Archaean Aravalli craton, northwestern Indian shield. Geological Magazine, 133, 333–342.CrossRefGoogle Scholar
  53. Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. In: R. L. Rudnick (Ed.), (pp. 1–64). Oxford: The Crust, Elsevier-Pergamon.Google Scholar
  54. Sharma, R. S. (1995). An evolutionary model for the Precambrian crust of Rajasthan: Some petrological and geochronological considerations. Memoirs of the Geological Society of India, 31, 91–115.Google Scholar
  55. Stern, R. A., & Hanson, G. N. (1991). Archaean high-Mg granodiorite: A derivative of light rare earth enriched monzodiorite of mantle origin. Journal of Petrology, 32, 201–238.CrossRefGoogle Scholar
  56. Stolz, A. J., Jochum, K. P., Spettle, B., & Hofmann, A. W. (1996). Fluid- and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts. Geology, 24(7), 587–590.CrossRefGoogle Scholar
  57. Streckeisen, A. L. (1976). Classification and nomenclature of igneous rocks. Earth-Science Reviews, 12, 1–35.CrossRefGoogle Scholar
  58. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society of London Special Publications, 42, 313–345.CrossRefGoogle Scholar
  59. Sylvester, P. J. (1994). Archaean granite plutons. In K. C. Condie (Ed.), Archaean crustal evolution. Development in Precambrian Geology (Vol. 11, pp. 261–314). Amsterdam: Elsevier.CrossRefGoogle Scholar
  60. Taylor, S. R., & McLennan, S. M. (1981). The composition and evolution of the continental-crust-rare-earth element evidence from sedimentary-rocks. Philosophical Transactions of the Royal Society of London, 301(1461), 381–399.CrossRefGoogle Scholar
  61. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution (p. 312). Oxford: Blackwell.Google Scholar
  62. Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265.CrossRefGoogle Scholar
  63. Weaver, B. L., & Tarney, J. (1984). Major and trace element composition of the continental lithosphere. Physics and Chemistry of the Earth, 15, 39–68.CrossRefGoogle Scholar
  64. Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1239.CrossRefGoogle Scholar
  65. Wickham, S. M. (1987). The segregation and emplacement of granitic magmas. Journal of the Geological Society, London, 144(2), 281–297. CrossRefGoogle Scholar
  66. Wickham, S. M., Litvinovsky, B. A., Zanvilevich, A. N., & Bindeman, I. N. (1995). Geochemical evolution of Phanerozoic magmatism in Transbaikalia, East Asia: A key constraint on the origin of K-rich silicic magmas and the process of cratonization. The Journal of Geophysical Research, 100, 15641–15654.CrossRefGoogle Scholar
  67. Wiedenbeck, M., & Goswami, J. N. (1994). High precision 207Pb/206Pb zircon geochronology using a small ion microprobe. Geochimica et Cosmochimica Acta, 58, 2135–2145.CrossRefGoogle Scholar
  68. Wiedenbeck, M., Goswami, J. N., & Roy, A. B. (1996). Stabilization of Aravalli craton of the north-western India at 2.5 Ma: An ion microprobe zircon study. Chemical Geology, 129, 325–340.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Md. Sayad Rahaman
    • 1
    • 2
    Email author
  • M. E. A. Mondal
    • 1
  • Iftikhar Ahmad
    • 1
  • R. Bhutani
    • 3
  • A. K. Choudhary
    • 4
  1. 1.Department of GeologyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of GeologyPresidency UniversityKolkataIndia
  3. 3.Department of Earth SciencesPondicherry UniversityPuducherryIndia
  4. 4.Institute Instrumentation Centre, Indian Institute of TechnologyRoorkeeIndia

Personalised recommendations