Advertisement

Trace, Rare-Earth Elements and C, O Isotope Systematics of Carbonate Rocks of Proterozoic Bhima Group, Eastern Dharwar Craton, India: Implications for the Source of Dissolved Components, Redox Condition and Biogeochemical Cycling of Mesoproterozoic Ocean

  • Nurul AbsarEmail author
  • Mohd Qaim Raza
  • Sminto Augustine
  • Shreyas Managave
  • D. Srinivasa Sarma
  • S. Balakrishnan
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

The Bhima basin is one of a series of Proterozoic basins that overlie the Archean Dharwar craton of South India. In the present study, we have systematically sampled the carbonate rocks from three stratigraphic horizons of Bhima Group and conducted geochemical and C–O isotopic studies in order to understand the source of dissolved components, redox condition and biogeochemical cycling of Mesoproterozoic Ocean. The presence of original microbial texture and Proterozoic marine like δ18O values (−6.38 to −7.17‰) indicate minimum diagenetic alteration. The carbonates have coherent REE + Y patterns and share the essential shale-normalised characteristics of well oxygenated, shallow ambient seawater, such as, (1) uniform heavy REE enrichment (Nd/YbSN = 0.43 ± 0.06), (2) consistent negative Ce anomalies (Ce/Ce* = 0.60 ± 0.05) and (3) superchondritic Y/Ho ratios (38.07 ± 3.17). The detailed geochemical modeling suggests (1) little influence (<1%) of clastic material on REY systematics, (2) significant contribution (~>10%) of river/estuarine run-off to the ambient sea water and possibly minor input from oceanic hydrothermal sources. High positive values of δ13C (3.8‰) in the basal Shahabad carbonates indicate burial of a large mass-fraction of isotopically light organic carbon. The gradual up-section decrease to ~1‰ δ13C suggest transgression and mixing of isotopically heavy coastal water (~4‰) with global Dissolved Inorganic Carbon (DIC) reservoir (~0‰). The short term negative δ13C excursion of magnitude ~5‰ at the base is consistent with upwelling of Oxygen Minimum Zone during the transgression event. The wide variability of δ13C (5.15‰, −1.37 to +3.81‰ PDB) in carbonates indicate greater sensitivity of C-isotope system as a consequence of lower buffering capacity and shrinking size of DIC reservoir, which would indicate increased surface oxidation and release of oxygen to the atmosphere.

Keywords

Rare earth element Carbon-oxygen isotope Carbonate Mid-proterozoic ocean Redox condition Bhima basin Dharwar craton 

Notes

Acknowledgements

The authors thank the authorities of Pondicherry University for extending the IRMS facility and XRD laboratory facility at the Department of Earth sciences, Pondicherry University. We also thank director, CSIR-National Geophysical Research Institute, Hyderabad, for allowing trace and rare earth element analysis at ICP-MS Laboratory, NGRI. An earlier version of the manuscript has been greatly improved by the suggestion and comments from the editor M. E. A. Mondal, reviewer John S. Armstrong-Altrin and one anonymous reviewer, for which the authors are extremely grateful. The work was supported with financial grant (SB/S4/ES-662/2013) from the Department of Science and Technology, Government of India, awarded to NA.

References

  1. Absar, N., Nizamudheen, B. M., & Augustine, S. (2016a). Petrography, clay mineralogy and geochemistry of clastic sediments of Proterozoic Bhima group, Eastern Dharwar Craton, India: Implication for provenance and tectonic setting. Journal of Applied Geochemistry, 18, 237–250.Google Scholar
  2. Absar, N., Nizamudheen, B. M., Augustine, S., Managave, S., & Balakrishnan, S. (2016b). C, O, Sr and Nd isotope systematics of carbonates of Papaghni sub-basin, Andhra Pradesh, India: Implications for genesis of carbonate-hosted stratiform uranium mineralisation and geodynamic evolution of the Cuddapah basin. Lithos, 263, 88–100.CrossRefGoogle Scholar
  3. Akhtar, K. (1977). Depositional environment, dispersal pattern and paleogeography of the clastic sequence in the Bhima basin. Indian Mineralogist, 18, 65–72.Google Scholar
  4. Alexander, B. W., Bau, M., Andersson, P., & Dulski, P. (2008). Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72, 378–394.CrossRefGoogle Scholar
  5. Alibo, D. S., & Nozaki, Y. (1999). Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63, 363–372.CrossRefGoogle Scholar
  6. Amarasinghe, U., Chaudhuri, A., Collins, A. S., Deb, G., & Patranabis-Deb, S. (2015). Evolving provenance in the Proterozoic Pranhita-Godavari basin, India. Geoscience Frontiers, 6, 453–463.CrossRefGoogle Scholar
  7. Anbar, A. D., & Knoll, A. H. (2002). Proterozoic ocean chemistry and evolution: A bioinorganic bridge. Science, 297, 1137–1142.CrossRefGoogle Scholar
  8. Azmy, K., Sylvester, P., & De Oliveira, T. F. (2009). Oceanic redox conditions in the Late Mesoproterozoic recorded in the upper Vazante Group carbonates of São Francisco Basin, Brazil: Evidence from stable isotopes and REEs. Precambrian Research, 168, 259–270.CrossRefGoogle Scholar
  9. Balaram, V., Ramesh, S. L., & Anjaiah, K. V. (1996). New trace element and REE data in thirteen GSF reference samples by ICP-MS. Geostandards and Geoanalytical Research, 20, 71–78.CrossRefGoogle Scholar
  10. Balaram, V., Rao, T. G., & Anjaiah, K. V. (1999). International proficiency tests for analytical geochemistry laboratories: An assessment of accuracy and precision in routine geochemical analysis. The Journal of the Geological Society of India, 53, 417–423.Google Scholar
  11. Banner, J. L., & Hanson, G. N. (1990). Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54, 3123–3137.CrossRefGoogle Scholar
  12. Bartley, J. K., & Kah, L. C. (2004). Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology, 32, 129–132.CrossRefGoogle Scholar
  13. Bau, M. (1993). Effects of syn- and post-depositional processes on the rare-earth element distribution in Precambrian iron-formations. European Journal of Mineralogy, 5, 257–267.CrossRefGoogle Scholar
  14. Bau, M. (1996). Controls on fractionation of isovalent trace elements in magmaticand aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123, 323–333.CrossRefGoogle Scholar
  15. Bau, M. (1999). Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63(1), 67–77. CrossRefGoogle Scholar
  16. Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55.CrossRefGoogle Scholar
  17. Bau, M., & Dulski, P. (1999). Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155(1), 77–90.CrossRefGoogle Scholar
  18. Bau, M., Hohndorf, A., Dulski, P., & Beukes, N. J. (1997). Sources of rare-earth elements and iron in Paleoproterozoic iron formations from the Transvaal Supergroup, South Africa: Evidence from neodymium isotopes. Journal of Geology, 105, 121–129.CrossRefGoogle Scholar
  19. Bau, M., Koschinsky, A., Dulski, P., & Hein, J. R. (1996). Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochimica et Cosmochimica Acta, 60, 1709–1725.CrossRefGoogle Scholar
  20. Bekker, A., Kaufman, A. J., Karhu, J. A., & Eriksson, K. A. (2005). Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Research, 137, 167–206.CrossRefGoogle Scholar
  21. Bekker, A., Krapež, B., Müller, S. G., & Karhu, J. A. (2016). A short-term, post-Lomagundi positive C isotope excursion at c. 2.03 Ga recorded by the Wooly Dolomite, Western Australia. Journal of the Geological Society, 173, 689–700.CrossRefGoogle Scholar
  22. Bickford, M. E., Basu, A., Patranabis-Deb, S., Dhang, P. C., & Schieber, J. (2011). Depositional history of the Chattisgarh basin, Central India: Constraints from New SHRIMP Zircon ages. Journal of Geology, 119, 33–50.CrossRefGoogle Scholar
  23. Bolhar, R., & Van Kranendonk, M. J. (2007). A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Research, 155, 229–250.CrossRefGoogle Scholar
  24. Bolhar, R., Kamber, B. S., Moorbath, S., & Fedo, C. M. (2004). Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters, 222, 43–60.CrossRefGoogle Scholar
  25. Brasier, M. D., & Lindsay, J. F. (1998). A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia. Geology, 26, 555–558.CrossRefGoogle Scholar
  26. Byrne, R. H., & Lee, J. H. (1993). Comparative yttrium and rare-earth element chemistries in seawater. Marine Chemistry, 44, 121–130.CrossRefGoogle Scholar
  27. Canfield, D. E. (1998). A new model for Proterozoic ocean chemistry. Nature, 396, 450–453.CrossRefGoogle Scholar
  28. Chakraborty, P. P., Dey, S., & Mohanty, S. P. (2010). Proterozoic platform sequences of Peninsular India: Implications towards basin evolution and supercontinent assembly. The Journal of Asian Earth Sciences, 39, 589–607.CrossRefGoogle Scholar
  29. Collins, A. S., Patranabis-Deb, S., Alexander, E., Bertram, C. N., Falster, G. M., Gore, R. J., et al. (2015). Detrital mineral age, radiogenic isotopic stratigraphy and tectonic significance of the Cuddapah Basin, India. Gondwana Research, 28, 1294–1309.CrossRefGoogle Scholar
  30. Condie, K. C. (2015). Earth an evolving planetary system (409 p.). Elsevier, London.Google Scholar
  31. Condie, K. C., Bickford, M. E., & Aster, R. C. (2011). Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geological Society of America Bulletin, 123, 95–957.CrossRefGoogle Scholar
  32. Conrad, J. E., Hein, J. R., Chaudhuri, A. K., Patranabis-Deb, S., Mukhopadhyay, J., Deb, G. K., et al. (2011). Constraints on the development of Proterozoic basins in central India from 40Ar/39Ar analysis of authigenic glauconitic minerals. Geological Society of America Bulletin, 123, 158–167.CrossRefGoogle Scholar
  33. De Baar, H. J. W., German, C. R., Elderfield, H., & Van Gaans, P. (1988). Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochimica et Cosmochimica Acta, 52, 1203–1219.CrossRefGoogle Scholar
  34. Derry, L. A., & Jacobsen, S. B. (1990). The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations. Geochimica et Cosmochimica Acta, 54, 2965–2977.CrossRefGoogle Scholar
  35. Derry, L. A., & Jacobsen, S. B. (1988). The Nd and Sr isotopic evolution of Proterozoic seawater. Geophysical Research Letters, 15, 397–400.CrossRefGoogle Scholar
  36. Dongre, A., Chalapathi Rao, N. V., & Kamde, G. (2008). Limestone xenolith in Siddanpalli kimberlite, Gadwal granite-greenstone terrain, Eastern Dharwar Craton, Southern India: Remnant of Proterozoic platformal cover sequence of Bhima/Kurnool age? Journal of Geology, 116, 184–191.CrossRefGoogle Scholar
  37. Dulsky, P. (2001). Reference materials for geochemical studies: New analytical data by ICP-MS and critical discussion of reference values. Geostandards and Geoanalytical Research, 25, 87–125.CrossRefGoogle Scholar
  38. Elderfield, H. (1988). The oceanic chemistry of the rare-earth elements. Philosophical Transactions of the Royal Society of London, 325, 105–126.CrossRefGoogle Scholar
  39. Elderfield, H., Upstill-Goddard, R., & Sholkovit, E. R. (1990). The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta, 54, 971–991.CrossRefGoogle Scholar
  40. Frank, T. D., Kah, L. C., & Lyons, T. W. (2003). Changes in organic matter production and accumulation as a mechanism for isotopic evolution in the Mesoproterozoic ocean. Geological Magazine, 140, 397–420.CrossRefGoogle Scholar
  41. Frimmel, H. E. (2009). Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology, 258, 338–353.CrossRefGoogle Scholar
  42. German, C. R., Holliday, B. P., & Elderfield, H. (1991). Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta, 55, 3553–3558.CrossRefGoogle Scholar
  43. Gilleadeau, G. J., & Kah, L. C. (2013). Carbon isotope records in a Mesoproterozoic epicratonic sea: Carbon cycling in a low-oxygen world. Precambrian Research, 228, 85–105.CrossRefGoogle Scholar
  44. Gilleaudeau, G. J., & Kah, L. C. (2015). Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic ocean: Evidence from carbon–sulfur–iron relationships. Precambrian Research, 257, 94–108.CrossRefGoogle Scholar
  45. Gilleaudeau, G. J., Frei, R., Kaufman, A. J., Kah, L. C., Azmy, K., Bartley, J. K., et al. (2016). Oxygenation of the mid-Proterozoic atmosphere: Clues from chromium isotopes in carbonates. Geochemical Perspectives Letters, 2, 178–187.CrossRefGoogle Scholar
  46. Guo, H., Yaunsheng, D., Kah, L. C., Huang, J., Chaoyong, H., Huang, H., et al. (2013). Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China: Implications for biological and oceanic evolution. Precambrian Research, 224, 169–183.CrossRefGoogle Scholar
  47. Han, T. M., & Runnegar, B. (1992). Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron-formation, Michigan. Science, 257, 232–235.CrossRefGoogle Scholar
  48. Hawkesworth, C., Cawood, P., Kemp, T., Storey, C., & Dhoumie, B. (2009). Geochemistry: A matter of preservation. Science, 323, 49–50.CrossRefGoogle Scholar
  49. Holland, T. H. (1907). Geology. Imperial Gazetteer of India, 1, 50–103.Google Scholar
  50. Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 903–915.CrossRefGoogle Scholar
  51. Jayaprakash, A. V. (2007). Purana basins of Karnataka (Vol. 129, 140 p.). Memoir Geological Survey of India.Google Scholar
  52. Kah, L. C., & Bartley, J. K. (2011). Protracted oxygenation of the Proterozoic biosphere. International Geology Review, 53, 1424–1442.CrossRefGoogle Scholar
  53. Kah, L. C., Lyons, T. W., & Chesley, J. T. (2001). Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: Implications for Mesoproterozoic marine evolution. Precambrian Research, 111, 203–234.CrossRefGoogle Scholar
  54. Kale, V. S., & Peshwa, V. V. (1995). Bhima basin (p. 142). Bangalore: Geological Society of India Memoir.Google Scholar
  55. Kale, V. S., & Peshwa, V. V. (1989). A Proterozoic pull-apart basin: Interpretation based on remotely sensed data. 28th International Geological Congress, Washington, 2, 149–150.Google Scholar
  56. Kale, V. S., & Phansalkar, V. G. (1991). Purana basins of peninsular India: A review. Basin Research, 3, 1–36.CrossRefGoogle Scholar
  57. Kamber, B. S., & Webb, G. E. (2001). The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history. Geochimica et Cosmochimica Acta, 65, 2509–2525.CrossRefGoogle Scholar
  58. Komiya, T., Hirata, T., Kitajima, K., Yamamoto, S., Shibuya, T., Sawaki, Y., et al. (2008). Evolution of the composition of seawater through geologic time, and its influence on the evolution of life. Gondwana Research, 14, 159–174.CrossRefGoogle Scholar
  59. Kumar, B., Das Sharma, S., Shukla, M., & Sharma, M. (1999). Chronostratigraphic implication of carbon and oxygen isotopic compositions of the Proterozoic Bhima carbonates, southern India. The Journal of the Geological Society of India, 53, 593–600.Google Scholar
  60. Kump, L. R., & Arthur, M. A. (1999). Interpreting carbon-isotope excursions: Carbonates and organic matter. Chemical Geology, 161, 181–198.CrossRefGoogle Scholar
  61. Lee, C. T. A., Yeung, L. Y., McKenzie, N. R., Yokoyama, Y., Ozaki, K., & Lenardic, A. (2016). Two-step rise of atmospheric oxygen linked to the growth of continents. Nature Geoscience, 9, 417–424.CrossRefGoogle Scholar
  62. Lee, J. H., & Byrne, R. H. (1992). Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions. Geochimica et Cosmochimica Acta, 57, 295–302.Google Scholar
  63. Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. (2014). The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506, 307–315.CrossRefGoogle Scholar
  64. Maithy, P. K., & Babu, R. (1996). Carbonaceous macrofossils and organic-walled microfossils from the Halkal Formation, Bhima Group, Karnataka with remarks on age. Palaeobotanist, 45, 1–6.Google Scholar
  65. Marshall, J. D. (1992). Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine, 129, 143–160.CrossRefGoogle Scholar
  66. Melezhik, V. A., Bingen, B., Fallick, A. E., Gorokhov, I. M., Kuznetsov, A. B., Sandstad, J. S., et al. (2008). Isotope chemostratigraphy of marbles in northeastern Mozambique: Apparent depositional ages and tectonostratigraphic implications. Precambrian Research, 162, 540–558.CrossRefGoogle Scholar
  67. Mills, D. B., Warda, L. M., Jonesa, C. A., Sweetena, B., Fortha, M., Treuscha, A. H., et al. (2014). Oxygen requirements of the earliest animals. Proceedings of the National Academy of Sciences USA, 111, 4168–4172.CrossRefGoogle Scholar
  68. Mishra, R. N., Jayaprakash, A. V., Hans, S. K., & Sundaram, V. (1987). Bhima Group of upper Proterozoic—a stratigraphic puzzle. Memoir Geological Society of India, 6, 227–237.Google Scholar
  69. Nagarajan, R., Armstrong-Altrin, J. S., Sial, A. C., Nagendra, R., & Ellam, R. A. (2013). Carbon, oxygen, and Sr isotope geochemistry of the Proterozoic carbonate rocks, Bhima basin, South India: Implication for diagenesis. Carpathian Journal of Earth And Environmental Sciences, 8, 25–38.Google Scholar
  70. Nagarajan, R., Madhavaraju, J., Armstrong-Altrin, J. S., & Nagendra, R. (2011). Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima basin, Karnataka, southern India. Journal of Geosciences, 15, 9–25.CrossRefGoogle Scholar
  71. Nagarajan, R., Sial, A. N., Armstrong-Altrin, J. S., Madhavaraju, J., & Nagendra, R. (2008). Carbon and oxygen isotope geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, Southern India. Revistas Mexicana de Ciencias Geologicas, 25, 225–235.Google Scholar
  72. Nothdurft, L. D., Webb, G. E., & Kamber, B. S. (2004). Rare earth element geochemistry of late Devonian reefal carbonates, Canning basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta, 68, 263–283.CrossRefGoogle Scholar
  73. Nozaki, Y., Zhang, J., & Amakawa, H. (1997). The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148, 329–340.CrossRefGoogle Scholar
  74. Pandey, B. K., Natarajan, V., Krishna, V., & Pandit, S. A. (2008). U–Pb and Sm–Nd isotopic studies on uraniferous brecciated limestone from Bhima basin: evidence for a Mesoproterozoic Umineralization event in southern peninsular India. In Significant Milestones in the Growth of Geochemistry in India During the 50 Year Period: 1958–2008. Jointly organized by Geological Society India and AMD, Hyderabad, (Abs), pp. 24–25.Google Scholar
  75. Pandey, B. K., Veena, K., Pandey, U. K., & Sastry, D. V. L. N. (2009). Radiometric dating of uranium mineralization in the Proterozoic basins of Eastern Dharwar craton, South India. In Proceeding International Conference on Peaceful Use of Atomic Energy, New Delhi, pp. 77–83.Google Scholar
  76. Patranabis-Deb, S., Bickford, M. E., Hill, B., Chaudhuri, A. K., & Basu, A. (2007). SHRIMP ages of zircon in the uppermost tuff in Chattisgarh basin in central India require ~500 Ma adjustment in Indian Proterozoic stratigraphy. Journal of Geology, 115, 407–415.CrossRefGoogle Scholar
  77. Patterson, W. P., & Walter, L. M. (1994). Depletion of 13C in seawater CO2 on modern carbonate platforms: Significance for the carbon isotopic record of carbonates. Geology, 22, 885–888.CrossRefGoogle Scholar
  78. Planavsky, N. J., McGoldrick, P., Scott, C. T., Li, C., Reinhard, C. T., Kelly, A. E., et al. (2011). Widespread iron-rich conditions in the mid-proterozoic ocean. Nature, 477, 448–451.CrossRefGoogle Scholar
  79. Planavsky, N. J., Asael, D., Hofman, A., Reinhard, C. T., Lalonde, S. V., Knudsen, A., et al. (2014). Evidence for oxygenic photosynthesis half a billion years before the great oxidation event. Nature Geoscience, 7, 283–286.CrossRefGoogle Scholar
  80. Planavsky, N. J., Bekker, A., Rouxel, O. J., Kamber, B., Hofmann, A., Knudsen, A., et al. (2010). Rare earth element and yttrium compositions of Archean and Pale oproterozoic Fe formations revisited: New perspectives on the significance andmechanisms of deposition. Geochimica et Cosmochimica Acta, 74, 6387–6405.CrossRefGoogle Scholar
  81. Pourmand, A., Dauphas, N., & Ireland, T. J. (2012). A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and post-Archean Australian shale (PAAS) abundances. Chemical Geology, 291, 38–54.CrossRefGoogle Scholar
  82. Radhakrishnan, T. (1987). Collision tectonics in the Himalaya as evidenced by the Indus and Shyok rock assemblages. Tectonophysics, 134, 1–16.CrossRefGoogle Scholar
  83. Ramakrishnan, M., & Vaidyanadhan, R. (2010). Geology of India. Geological Society of India, 1, 556. v. 2, 428 p.Google Scholar
  84. Rasmussen, B., Fletcher, I. R., Brocks, J. J., & Kilburn, M. R. (2008). Reassessing the first appearance of eukaryotes and cyanobacteria. Nature, 455, 1101–1104.CrossRefGoogle Scholar
  85. Ray, J. S., Veizer, J., & Davis, W. J. (2003). C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: Age, diagenesis, correlations and implications for global events. Precambrian Research, 121, 103–140.CrossRefGoogle Scholar
  86. Rogers, J. J. W., & Santosh, M. (2004). Continents and supercontinents. Oxford: Oxford University Press, 281 p.Google Scholar
  87. Schoepfer, S. D., Henderson, C. M., Garrison, G. H., & Ward, P. D. (2012). Cessation of a productive coastal upwelling system in the Panthalassic ocean at the Permian-Triassic boundary. Paleogeography Paleoclimatology Paleoecology, 313–314, 181–188.CrossRefGoogle Scholar
  88. Sharma, M., & Shukla, Y. (2012). Megascopic carbonaceous compression fossils from the Neoproterozoic Bhima basin, Karnataka, South India. In G. M. Bhat, J. Craig, J. W. Thurow, B. Thusu, & A. Cozzi (Eds.), Geology and hydrocarbon potential of Neoproterozoic-Cambrian basins in Asia (Vol. 366, pp. 277–293). London: Geological Society London.Google Scholar
  89. Shields, G., & Veizer, J. (2002). Precambrian marine carbonate isotope database: Version 1.1. Geochemistry, Geophysics, Geosystems, 3(6), 1–12.  https://doi.org/10.1029/2001GC000266.CrossRefGoogle Scholar
  90. Sholkovitz, E. R., Landing, W. M., & Lewis, B. L. (1994). Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta, 58, 1567–1579.CrossRefGoogle Scholar
  91. Sperling, E. A., Rooney, A. D., Hays, L., Sergeev, V. N., Vorob’eva, N. G., Sergeeva, N. D., et al. (2014). Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology, 12, 373–386.CrossRefGoogle Scholar
  92. Sreenivas, B., Balaram, V., & Srinivasan, R. (1995). Trace and rare earth element contamination during routine preparation of sample powders for geochemical studies—effects of grinding tools. Indian Journal of Geology, 66, 296–304.Google Scholar
  93. Tang, D., Xiaoying, S., Wanga, X., & Jiangda, G. (2016). Extremely low oxygen concentration in mid-proterozoic shallow seawaters. Precambrian Research, 276, 145–157.CrossRefGoogle Scholar
  94. Tang, H. S., Chen, Y. J., Santosh, M., Zhong, H., & Yang, T. (2013). REE geochemistry of carbonates from the Guanmenshan Formation, Liaohe Group, NE Sino-Korean Craton: Implications for seawater compositional change during the great oxidation event. Precambrian Research, 227, 316–336.CrossRefGoogle Scholar
  95. Tostevin, R., Shields, G. A., Tarbuck, G. M., Tianchen, H., Clarkson, M. O., & Wood, R. A. (2016). Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology, 438, 146–162.CrossRefGoogle Scholar
  96. Van Kranendonk, M. J., Webb, G. E., & Kamber, B. S. (2003). Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology, 1, 91–108.CrossRefGoogle Scholar
  97. Veizer, J. (1983). Chemical diagenesis of carbonates; theory and application of trace element technique, In M. A. Arthur, T. F. Anderson, I. R. Kaplan, J. Veizer & L. S. Land (Eds.), Stable isotopes in sedimentary geology (Vols. 3–1, pp. 3–100). Society of Economic Palaeontologists and Mineralogists.Google Scholar
  98. Veizer, J., Compston, W., Hoefs, J., & Nielsen, H. (1982). Mantle buffering of the early oceans. Naturwissenschaften, 69, 173–180.CrossRefGoogle Scholar
  99. Vijaya Rao, V., & Reddy, P. R. (2002). A mesoproterozoic supercontinent: Evidence from the Indian shield. Gondwana Research, 5(1), 63–74.CrossRefGoogle Scholar
  100. Webb, G. E., & Kamber, B. S. (2000). Rare earth elements in Holocene reefal microbialites: A shallow seawater proxy. Geochimica et Cosmochimica Acta, 64, 1557–1565.CrossRefGoogle Scholar
  101. Wignall, P. B., & Twitchett, R. J. (1996). Oceanic anoxia and the end Permian mass extinction. Science, 272, 1155–1158.CrossRefGoogle Scholar
  102. Yadava, M. G. (2002). Stable isotope systematics in cave calcites: Implications to past climatic changes in tropical India. Unpublished PhD thesis, Devi Ahilya Vishwavidyalaya, Indore, India.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nurul Absar
    • 1
    Email author
  • Mohd Qaim Raza
    • 1
  • Sminto Augustine
    • 1
  • Shreyas Managave
    • 1
  • D. Srinivasa Sarma
    • 2
  • S. Balakrishnan
    • 1
  1. 1.Department of Earth SciencesPondicherry UniversityPuducherryIndia
  2. 2.CSIR-National Geophysical Research InstituteHyderabadIndia

Personalised recommendations