Advertisement

Controls on Cyclic Sedimentation Within the Neoproterozoic Sirbu Shale, Vindhyan Basin, Central India

  • Pradip SamantaEmail author
  • Soumik Mukhopadhyay
  • Sunipa Mandal
  • Subir Sarkar
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

The present paper dwells upon high frequency lower orders cycles from the Neoproterozoic Sirbu Shale, Vindhyan Supergroup, central India, and aims to extract their causal factors. The Sirbu Shale, characterized by a transgressive lag at its base, is bounded between the coastal playa sediments of the underlying Lower Bhander Sandstone and the marginal marine to fluvial sediments of the overlying Upper Bhander Sandstone. The study focuses on the upper part of the Sirbu Shale that initiates with a thick pyrite rich shale, without bearing any wave features, representing the maximum marine flooding zone (MFZ). Lithofacies analysis suggests a storm dominated outer shelf to foreshore-beach setting. Lithofacies and lithofacies successions interpreted in terms of sequence srtartigraphic framework, suggests that the studied interval represents a shallowing upward prograding succession, designated as a Highstand Systems Tract (HST). Intrinsic studies unravel that the interval incorporates two different orders of high frequency cyclicities, in terms of parasequence and parasequence sets. The parasequences are genetically related shoaling-upward successions bounded by marine flooding surfaces and are mostly formed by autocyclic processes. Nonetheless, the parasequences towards the basal part of the interval shows evidences of geostrophic flows. The parasequence sets, encompassing two to five parasequences, are composed of relatively higher order genetically related shoaling-upward successions. The conspicuous existence of soft-sediment deformational structures at top of each parasequence sets are laterally correlatable. The role of tectonics might have been significant in creating the accommodation space and thereby controlling the cyclic sedimentation as exemplified from the studied interval of the Sirbu Shale.

Keywords

Neoproterozoic Sirbu shale Cyclic sedimentation Parasequence Parasequence sets Sag basin Tectonics 

Notes

Acknowledgements

PS gratefully acknowledges the financial support received from UGC minor project scheme. SM acknowledges the financial support received from UPE Programme—2, Jadavpur University. All the authors acknowledge their respective Departments for the infrastructural help.

References

  1. Bashforth, A. R., DiMichele, W. A., Eble, C. F., & Nelson, W. J. (2016a). A Middle Pennsylvanian macrofloral assemblage from wetland deposits in Indiana (Illinois Basin): A taxonomic contribution with biostratigraphic, paleobiogeographic, and paleoecologic implications. Journal of Paleontology, 90, 589–631.CrossRefGoogle Scholar
  2. Bashforth, A. R., DiMichele, W. A., Eble, C. F., & Nelson, W. J. (2016b). Dryland vegetation from the Middle Pennsylvanian of Indiana (Illinois Basin): The dryland biome in glacioeustatic, paleobiogeographic, and paleoecologic context. Journal of Paleontology, 90, 785–814.CrossRefGoogle Scholar
  3. Bhattacharya, H. N., & Bhattacharya, B. (2005). Storm event beds in a Paleoproterozoic rift basin, Aravalli Supergroup, Rajasthan, India. Gondwana Research, 8, 231–239.CrossRefGoogle Scholar
  4. Bhattacharya, H. N., & Bhattacharya, B. (2011). Sole marks in storm beds from a glacially influenced Late Paleozoic shallow sea, Talchir Formation, Talchir Basin, India. Indian Journal of Geosciences, 65(3), 175–188.Google Scholar
  5. Bhattacharya, H. N., Bhattacharya, B., Chakraborty, I., & Chakraborty, A. (2004). Sole marks in storm event beds in the permo-carboniferous Talchir Formation, Raniganj Basin, India. Sedimentary Geology, 166, 209–222.CrossRefGoogle Scholar
  6. Bose, P. K., Banerjee, S., & Sarkar, S. (1997). Slope controlled seismic deformation and tectonic framework of deposition: Koldaha Shale, India. Tectonophysics, 269, 151–169.CrossRefGoogle Scholar
  7. Bose, P. K., Chakraborty, S., & Sarkar, S. (1999). Recognition of ancient aeolian longitudinal dunes: A case study from the Upper Bhander sandstone, Son valley, India. Journal Sedimentary Research, 69, 86–95.CrossRefGoogle Scholar
  8. Bose, P. K., & Chaudhuri, A. K. (1990). Tide versus storm in epeiric coastal deposition: Two Proterozoic sequences, India. Geological Journal, 25, 81–101.CrossRefGoogle Scholar
  9. Bose, P. K., Chaudhuri, A., & Seth, A. (1988). Facies, flow and bedform patterns across a storm-dominated inner continental shelf: Proterozoic Kaimur Formation, Rajasthan, India. Sedimentary Geology, 59, 275–293.CrossRefGoogle Scholar
  10. Bose, P. K., Eriksson, P. G., Sarkar, S., Wright, D. T., Samanta, P., Mukhopadhyay, S., et al. (2012). Sedimentation patterns during the Precambrian: A unique record? Marine and Petroleum Geology, 33(1), 34–68.CrossRefGoogle Scholar
  11. Bose, P. K., Sarkar, S., Chakraborty, S., & Banerjee, S. (2001). Overview of the Meso- to Neoproterozoic evolution of the Vindhyan basin, Central India. Sedimentary Geology, 141(2), 395–419.CrossRefGoogle Scholar
  12. Catuneanu, O. (2006). Principles of sequence stratigraphy (p. 336). Amsterdam: Elsevier Publ.Google Scholar
  13. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., et al. (2009). Towards the standardization of sequence stratigraphy. Earth Science Review, 92(1), 1–33.CrossRefGoogle Scholar
  14. Catuneanu, O., Galloway, W. E., Kendall, C. G. St. C., Miall, A. D., Posamentier, H. W., Strasser, A., Tucker, M. E. (2011). Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44(3), 173–245.CrossRefGoogle Scholar
  15. Catuneanu, O., & Zecchin, M. (2013). High-resolution sequence stratigraphy of clastic shelves II: Controls on sequence development. Marine and Petroleum Geology, 39, 26–38.CrossRefGoogle Scholar
  16. Cecil, C. B. (2003). The concept of autocyclic and allocyclic controls on sedimentation and strstigraphy, emphasizing the climatic variable. Journal of Sedimentary Research, Special Publication, 77, 13–20.Google Scholar
  17. Chakraborty, P. P., Das, P., Das, K., Saha, S., & Balakrishnan, S. (2012). Regressive depositional architecture on a Mesoproterozoic siliciclastic ramp: Sequence stratigraphic and Nd isotopic evidences from Bhalukona Formation, Singhora Group, Chhattisgarh Supergroup, Central India. Precambrian Research, 200–203, 129–148.CrossRefGoogle Scholar
  18. Chakraborty, P. P., & Sarkar, S. (2005). Episodic emergence of offshore shale and its implications: Late Proterozoic Rewa Shale, Son Valley, Central India. Journal Geological Society of India, 66, 699–712.Google Scholar
  19. Chakraborty, P. P., Sarkar, S., & Bose, P. K. (1998). A view point on intracratonic chenier evolution: Clue from a reappraisal of the Proterozoic Ganurgarh Shale, Central India. In B. S. Paliwal (Ed.), The Indian Precambrian (pp. 61–72). Jodhpur: Scientific Publishers (India).Google Scholar
  20. Chanda, S. K., & Bhattacharyya, A. (1982). Vindhyan sedimentation and paleogeography: Post Auden developments. In K. S. Valdiya, S. B. Bhatia, & V. K. Gaur (Eds.), Geology of Vindhyanchal (pp. 88–101). Delhi: Hindustan Publishing Corporation.Google Scholar
  21. Davis, R. A. (1977). Principles of oceanography (p. 505). Reading, Mass: Addison-Wesley Publishing.Google Scholar
  22. Davis, H. R., Byers, C. W., & Pratt, L. (1989). Deposition, mechanism and organic matter in Mowry shale (Cretaceous) Wyoming. AAPG Bulletin, 73, 1103–1116.Google Scholar
  23. Dott, R. H., Jr., & Bourgeois, J. (1982). Hummocky stratification: Significance and its variable bedding sequences. Geological Society of America Bulletin, 93, 663–680.CrossRefGoogle Scholar
  24. Drummond, C. N., & Wilkinson, B. H. (1996). Stratal thickness frequencies and the prevalence of orderedness in stratigraphic sequences. Journal of Geology, 104, 1–18.CrossRefGoogle Scholar
  25. Eberli, G., & Ginsburg, R. N. (1989). Cenozoic progradation of northwestern Great Bahama Bank, a record of lateral platform growth and sea-level fluctuations. In P. D. Crevello, J. L. Wilson, J. F. Sarg, & J. F. Read (Eds.), Controls on carbonate platform and basin development (Vol. 44, pp. 339–351). Tulsa: Society of Economic Paleontologists and Mineralogists Special Publication.CrossRefGoogle Scholar
  26. Einsele, G. (1991). Sedimentary basins—Evolution, facies and sediment budget (632p). Berlin: Springer.Google Scholar
  27. Eriksson, P. G., Condie, K. C., & Trisgaard, S. (1998). Precambrian clastic sedimentation systems. Sedimentary Geology, 120, 5–53.CrossRefGoogle Scholar
  28. Eriksson, P. G., Sarkar, S., Banerjee, S., Porada, H., Catuneanu, O., Bose, P. K., et al. (2010). Palaeoenvironmental context of microbial mat related structures in siliciclastic rocks: Examples from Proterozoics of India and South Africa. In J. Seckbach & A. Oren (Eds.), Microbial mats: Modern and ancient microorganisms in stratified systems (pp. 71–108). Berlin: Springer.CrossRefGoogle Scholar
  29. Figueiredo, A. G. (1980). Response of water column to strong wind forcing, southern Brazilian inner shelf: Implications for sand ridge formation. Marine Geology, 35, 367–376.CrossRefGoogle Scholar
  30. Hota, R. N., Pandya, K. L., & Maejima, W. (2003). Cyclic sedimentation and facies organization of the coal Bearing Barakar Formation, Singrauli Coalfield, Orissa, India: A statistical analysis of subsurface logs. Journal of Geoscience, 46, 1–11.Google Scholar
  31. Hota, R. N., & Sahoo, M. (2009). Cyclic sedimentation of the Karharbari Formation (Damuda Group), Talchir Gondwana Basin, Orissa. Journal Geological Society of India, 73(4), 469–478.CrossRefGoogle Scholar
  32. Jessen, C. A., Rundgren, M., Björck, S., & Hammarlund, D. (2005). Abrupt climatic changes and an unstable transition into a late Holocene Thermal Decline: A multiproxy lacustrine record from southern Sweden. Journal of Quaternary Science, 20, 349–362.CrossRefGoogle Scholar
  33. Leckie, D. A., & Kristinic, L. F. (1989). Is there evidence for geostrophic currents preserved in the sedimentary record of inner to middle-shelf deposits? Journal of Sedimentary Petrology, 59, 862–870.Google Scholar
  34. Malone, S. J., Meert, J. G., Banerjee, D. M., Pandit, M. K., Tamrat, E., Kamenov, G. D., et al. (2008). Paleomagnetism and Detrital Zircon geochronology of the Upper Vindhyan sequence, Son Valley and Rajasthan, India: A ca. 1000 Ma age for the Purana Basins? Precambrian Research, 164, 137–159.CrossRefGoogle Scholar
  35. Miall, A. D. (1991). Stratigraphic sequences and their chronostratigraphic correlation. Journal of Sedimentary Petrology, 61, 497–505.Google Scholar
  36. Miall, A. D. (2010). The geology of stratigraphic sequences (532p). Berlin: Springer.CrossRefGoogle Scholar
  37. Mitchum, R. M., Jr., & van Wagoner, J. C. (1991). High-frequency sequences and their stacking patterns: Sequence stratigraphic evidence of high-frequency eustatic cycles. Sedimentary Geology, 70, 131–160.CrossRefGoogle Scholar
  38. Myrow, P. M., Fischer, W., & Goodge, J. W. (2002). Wave-modified turbidites: Combined-flow shoreline and shelf deposits, Cambrian, Antarctica. Journal of Sedimentary Research, 72(5), 641–656.CrossRefGoogle Scholar
  39. Myrow, P. M., & Southard, J. B. (1996). Tempestite deposition. Journal of Sedimentary Research, 66, 875–887.Google Scholar
  40. Nio, S. D., & Yang, C. S. (1991). Sea-level fluctuations and the geometric variability of tide-dominated sandbodies. Sedimentary Geology, 70, 161–193.CrossRefGoogle Scholar
  41. Noffke, N., Gerdes, G., Klenke, T., & Krumbein, W. E. (2001). Microbially induced sedimentary structures—A new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71, 649–656.CrossRefGoogle Scholar
  42. Olszewski, T. D., & Patzkowsky, M. E. (2003). From cyclothems to sequences: The record of eustacy and climate on an icehouse epeiric platform (Pennsylvanian-Permian, North American mid-continent). Journal Sedimentary Research, 73, 15–30.CrossRefGoogle Scholar
  43. Pattison, S. A. J. (2005). Storm-influenced prodelta turbidite complex in the lower Kenilworth Member at Hatch Mesa, Book Cliffs, Utah, U.S.A.: Implications for shallow marine facies models. Journal of Sedimentary Research, 75, 420–439.CrossRefGoogle Scholar
  44. Posamentier, H. W., & Allen, G. P. (1999). SEPM Concepts in Sedimentology and Palaeontology: Vol. 9. Siliciclastic sequence stratigraphy: Concepts and applications (210p). Tulsa: Society for Sedimentary Geology.Google Scholar
  45. Posamentier, H. W., & Vail, P. R. (1988). Eustatic controls on clastic deposition II—Sequence and systems tract models. In C. K. Wilgus, B. S. Hastings, C. G. St. C. Kendall, H. W. Posamentier, C. A. Ross, & J. C. van Wagoner (Eds.), Sea level change—An integrated approach (Vol. 42, pp. 125–154). Tulsa: SEPM Special Publication.CrossRefGoogle Scholar
  46. Quigley, M. C., Sandifordand, M., & Cupper, M. L. (2007). Distinguishing tectonic from climatic controls on range—Front sedimentation. Basin Research, 19, 491–505.CrossRefGoogle Scholar
  47. Ray, J. S., Veizer, J., & Davis, W. J. (2003). C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: Age, diagenesis, correlations and implications for global events. Precambrian Research, 121, 103–140.CrossRefGoogle Scholar
  48. Saarse, L. (2015). Cyclic sedimentation pattern in Lake Veetka, Southeast Estonia: A case study. Geologos, 21(1), 59–69.CrossRefGoogle Scholar
  49. Samanta, P., Mukhopadhyay, S., & Eriksson, P. G. (2016). Forced regressive wedge in the Mesoproterozoic Koldaha Shale, Vindhyan basin, Son Valley, Central India. Journal of Marine and Petroleum Geology, 71, 329–343.CrossRefGoogle Scholar
  50. Samanta, P., Mukhopadhyay, S., Mandal, A., & Sarkar, S. (2011). Microbial mat structures in profile: The Neoproterozoic Sonia Sandstone, Rajasthan, India. Journal of Asian Earth Sciences, 40, 542–549.CrossRefGoogle Scholar
  51. Samanta, P., Mukhopadhyay, S., Sarkar, S., & Eriksson, P. G. (2015). Neoproterozoic substrate condition vis-à-vis microbial mat structure and its implications: Sonia Sandstone, Rajasthan, India. Journal of Asian Earth Science, 106, 186–196.CrossRefGoogle Scholar
  52. Sarkar, S., Banerjee, S., Eriksson, P. G., & Catuneanu, O. (2005). Microbial mat control on siliciclastic Precambrian sequence stratigraphic architecture: Examples from India. Sedimentary Geology, 176, 195–209.CrossRefGoogle Scholar
  53. Sarkar, S., Banerjee, S., Samanta, P., Chakraborty, N., Chakraborty, P. P., Mukhopadhyay, S., et al. (2014). Microbial mat records in siliciclastic rocks: Examples from Four Indian Proterozoic basins and their modern equivalents in Gulf of Cambay. Journal of Asian Earth Science, 91, 362–377.CrossRefGoogle Scholar
  54. Sarkar, S., Banerjee, S., Samanta, P., & Jeevankumar, S. (2006). Micrbial mat-induced sedimentary structures in siliciclastic sediments: Examples from the 1.6 Ga Chorhat Sandstone, Vindhyan Supergroup, M.P. India. Journal of Earth System Science, 115(1), 49–60.CrossRefGoogle Scholar
  55. Sarkar, S., Bose, P. K., & Eriksson, P. G. (2011). Neoproterozoic tsunamiite: Upper Bhander sandstone, Central India. Sedimentary Geology, 238(1–2), 181–190.CrossRefGoogle Scholar
  56. Sarkar, S., Bose, P. K., Samanta, P., Sengupta, P., & Eriksson, P. G. (2008). Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for Proterozoic sedimentation. Precambrian Research, 162, 248–263.CrossRefGoogle Scholar
  57. Sarkar, S., Chakraborty, S., Banerjee, S., & Bose, P. K. (2002a). Facies sequence and cryptic imprint of sag tectonics in late Proterozoic Sirbu Shale, Central India. In W. Altermann & P. Corcoran (Eds.), Precambrian sedimentary environments: A modern approach to ancient depositional systems (Vol. 33, pp. 369–382). Oxford: International Association of Sedimentologists, Special Publication (Blackwell Science).Google Scholar
  58. Sarkar, S., Banerjee, S. Chakraborty, S., & Bose, P. K. (2002b). Shelf storm flow dynamics: An insight from the Mesoproterozoic Rampur Shale, central India. Sedimentary Geology, 147, 89–104.CrossRefGoogle Scholar
  59. Schieber, J. (1986). The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Mid-Proterozoic basins. Sedimentology, 33, 521–536.CrossRefGoogle Scholar
  60. Schieber, J. (1998). Possible indicators of microbial mat deposit in shale and sandstones: Example from the Mid-Proterozoic Belt Supergroup, Montana, U.S.A. Sedimentary Geology, 120, 105–124.CrossRefGoogle Scholar
  61. Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Altermann, W., et al. (2007). Atlases in Geoscience: Vol. 2. Atlas of microbial mat features preserved within the Siliciclastic Rock Record (pp. 117–133). Amsterdam: Elsevier.Google Scholar
  62. Schlager, W. (2004). Fractal nature of stratigraphic sequences. Geology, 32, 185–188.CrossRefGoogle Scholar
  63. Shirai, M., & Tada, R. (2000). Sedimentary successions formed by fifth-order glacio-eustatic cycles in the middle to upper quarternary formations of Oga Peninsula, Northeast Japan. Journal of Sedimentary Research, 70(4), 839–849.CrossRefGoogle Scholar
  64. Singh, I. B. (1974). Depositional environment of the Upper Vindhyan sediments in the Satna-Maihar area, Madhya Pradesh and its bearing on the evolution of the Vindhyan sedimentation basin. Journal Palaeontological Society of India, 19, 48–70.Google Scholar
  65. Skilbeck, C. G., Rolph, T. C., Hill, N., Woods, J., & Wilkens, R. H. (2005). Holocene millennial/centennial-scale multiproxy cyclicity in temperate eastern Australian estuary sediments. Journal of Quaternary Science, 20, 327–347.CrossRefGoogle Scholar
  66. Sloss, L. L. (1988). Tectonic evolution of the craton in Phanerozoic time. In L. L. Sloss (Ed.), Sedimentary cover—North American Craton (Vol. D-2, pp. 25–51). The Geology of North America, Boulder, Colorado, U.S: Geological Society of America.Google Scholar
  67. Snedden, J. W., & Swift, D. J. P. (1991). Is there evidence for geostrophic currents preserved in the sedimentary record of inner to middle-shelf deposits? Reply—Discussion. Journal of Sedimentary Petrology, 61(1), 148–151.CrossRefGoogle Scholar
  68. Strasser, A., Pittet, B., Hillgärtner, H., & Pasquier, J. B. (1999). Depositional sequences in shallow carbonate-dominated sedimentary systems: Concepts for a high-resolution analysis. Sedimentary Geology, 128, 201–221.CrossRefGoogle Scholar
  69. Swift, D. J. P., Freeland, G. L., & Young, R. A. (1979). Time and space distribution of megaripples and associated bedforms, Middle Atlantic Bight, North American Atlantic Shelf. Sedimentology, 26, 389–406.CrossRefGoogle Scholar
  70. Swift, D. J. P., Hudelson, P. M., Brenner, R. L., & Thompson, P. (1987). Shelf construction in a foreland basin: Storm beds, shelf sand-bodies, and shelf-slope deposotional sequences in the Upper Cretaceous Mesaverda Group, Book Cliffs, Uttah. Sedimentology, 34, 423–457.CrossRefGoogle Scholar
  71. Swift, D. J. P., & Nummedal, D. (1987). Hummocky cross-stratification, tropical hurricanes, and intense winter storms: Discussion. Sedimentology, 34, 338–344.CrossRefGoogle Scholar
  72. Swift, D. J. P., & Rice, D. D. (1984). Sand bodies on muddy shelves: A model for sedimentation in the Western Interior Cretaceous Seaway, North America. In R. D. Tillman & C. T. Seemers (Eds.), Siliciclastic shelf sediments (Vol. 34, pp. 43–62). Tulsa: SEPM special Publication.CrossRefGoogle Scholar
  73. Vail, P. R., Audemard, F., Bowman, S. A., Eisner, P. N., & Perez-Cruz, C. (1991). The stratigraphic signatures of tectonics, eustasy and sedimentology: An overview. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 617–659). Berlin: Springer.Google Scholar
  74. Vail, P. R., Mitchum, R. M., Jr., Todd, R. G., Widmier, J. M., Thompson, S., III, Sangree, J. B., et al. (1977). Seismic stratigraphy and global changes of sea-level. In C. E. Payton (Ed.), Seismic stratigraphy—Applications to hydrocarbon exploration (Vol. 26, pp. 49–212). Tulsa: AAPG Memoir.Google Scholar
  75. van Wagoner, J. C., Mitchum, R. M., Campion, K. M., & Rahmanian, V. D. (1990). Methods in Exploration Series: Vol. 7. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops (55p). Tulsa: American Association of Petroleum Geologists.Google Scholar
  76. van Wagoner, J. C., Posamentier, H. W., & Mitchum, R. M. (1988). An overview of the fundamentals of sequence stratigraphy and key definitions. In C. K. Wilgus, B.S. Hastings, C. G. St. C. Kendall, H. W Posamentier, C. A. Ross, & J.C. van Wagoner (Eds.), Sea-level changes: An integrated approach (Vol. 42, pp. 39–45). Tulsa: Special Publication Society of Economic Paleontologists and Mineralogists.Google Scholar
  77. Venkatachala, B. S., Sharma, M., & Shukla, M. (1996). Age and life in Vindhyans: Facts and conjectures. In A. Bhattacharyya (Ed.), Recent Advances in Vindhyan Geology (Vol. 36, pp. 137–165). Bangalore: Memoirs of the Geological Survey of India.Google Scholar
  78. Walker, R. G. (1984). Facies models (p. 317). Newfoundland, Canada: Geological Association Canada.Google Scholar
  79. Williams, G. E., & Schmidt, P. W. (1996). Origin and paleomagnetism of the Mesoproterozoic Gangau tilloid (basal Vindhyan Supergroup), Central India. Precambrian Research, 79, 307–325.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Pradip Samanta
    • 1
    • 2
    Email author
  • Soumik Mukhopadhyay
    • 3
  • Sunipa Mandal
    • 3
  • Subir Sarkar
    • 3
  1. 1.Department of GeologyDurgapur Government CollegeDurgapurIndia
  2. 2.Department of GeologyUniversity of North BengalDarjeelingIndia
  3. 3.Department of Geological SciencesJadavpur UniversityKolkataIndia

Personalised recommendations