Advertisement

Provenance and Tectonic Setting of the Proterozoic Clastic Rocks of the Kerur Formation, Badami Group, Mohare Area, Karnataka, India

  • K. Velmurugan
  • J. MadhavarajuEmail author
  • V. Balaram
  • A. Ramachandran
  • S. Ramasamy
  • E. Ramirez-Montoya
  • J. C. Saucedo-Samaniego
Chapter
Part of the Society of Earth Scientists Series book series (SESS)

Abstract

The clastic rocks of the Kerur Formation Group were analyzed for major, trace and rare earth elements to infer the tectonic settings and provenance signatures. The lithology of the Kerur Formation includes basal arenite (BA), lower conglomerate (LC), quartz arenite (QA) and upper conglomerate (UC). The CIA and PIA values and A–CN–K diagram indicate a moderate to intense chemical weathering for the clastic rocks of the Kerur Formation. The bivariate plot and multidimensional diagram based on major-trace elements suggesting the clastic rocks were derived mainly from the passive margin setting. A silicic source for clastic rocks of the Kerur Formation is indicated by higher ratios of SiO2/Al2O3, ΣLREE/ΣHREE, elemental ratios, bivariate and ternary plots. REE patterns and Eu anomalies support that TTG (Tonalite-Trondhjemite gneiss), granodiorite, granitic rocks of the Dharwar Craton and the basement rock (schist) of the Kaladgi-Badami Basin could be the source rocks for the Kerur Formation. REE modeling suggests that the average composition of the Kerur Formation represents a mixture of sediments derived from a provenance consisting of 40% TTG, 30% granite, 20% granodiorite and 10% schist.

Keywords

Geochemistry Provenance Tectonic setting Badami Group India 

Notes

Acknowledgements

The authors thank UGC (No: F./PDFSS-2013-14-SC-TAM-5682 dated 7.7.2014) and DAE-BRNS (No. 2008/36/41-BRNS/1969 dated 14/11/2008) for financial support for the project. They are indebted to the Director, AMD, Hyderabad and Regional Director, Dr. A. K. Rai, AMD, Bangalore for various help. We also thank Dr. Nagaraj, Dr. Panneerselvam, Mr. Natarajan, Mr. Nagendra Kumar, and Dr. K. T. Singh, Scientists of AMD-Bangalore, for their help during field work in Mohare site.

References

  1. Agrawal, S., & Verma, S. P. (2007). Comment on “Tectonic classification of basalts with classification trees” by Pieter Vermeesch (2006). Geochimica et Cosmochimica Acta, 71, 3388–3390.CrossRefGoogle Scholar
  2. Allen, P. (1985). The geochemistry of the Amphibolite-Granulite facies transition in Central South India (Unpublished Ph.D. thesis). New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA.Google Scholar
  3. Armstrong-Altrin, J. S., & Machain-Castillo, M. L. (2016). Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 71, 182–200.CrossRefGoogle Scholar
  4. Armstrong-Altrin, J. S., Nagarajan, R., Balaram, V., & Natalhy-Pineda, O. (2015). Petrography and geochemistry of sands from the Chachalacas and Veracruz Beach areas, western Gulf of Mexico, Mexico: Constraints on provenance and tectonic setting. Journal of South American Earth Sciences, 64, 199–216.CrossRefGoogle Scholar
  5. Armstrong-Altrin, J. S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y. I., Balaram, V., et al. (2013). Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting. Comptes Rendus Geosciences, 345, 185–202.CrossRefGoogle Scholar
  6. Armstrong-Altrin, J. S., & Verma, S. P. (2005). Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology, 177, 115–129.CrossRefGoogle Scholar
  7. Balaram, V., & Rao, T. G. (2003). Rapid determination of REE and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectroscopy, 24, 206–212.Google Scholar
  8. Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Geology, 91, 611–627.CrossRefGoogle Scholar
  9. Bhatia, M. R. (1985). Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sedimentary Geology, 45, 97–113.CrossRefGoogle Scholar
  10. Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 81–193.CrossRefGoogle Scholar
  11. Bhushan, S. K., & Sahoo, P. (2010). Geochemistry of clastic sediments from Sargur supracrustals and Bababudan Group, Karnataka: Implications on Archaean Proterozoic Boundary. Journal of the Geological Society of India, 75, 829–840.CrossRefGoogle Scholar
  12. Bruce Foote, R. (1876) Geology of the Southern Mahratta Country (vol. 12, pt. 1, 268p). Calcutta: Memoirs of the Geological Survey of India.Google Scholar
  13. Condie, K. C. (1993). Chemical composition and evolution of upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1–37.CrossRefGoogle Scholar
  14. Cullers, R. L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, U.S.A.: Implications for provenance and metamorphic studies. Lithosphere, 51, 181–203.Google Scholar
  15. Cullers, R. L. (1995). The controls on the major and trace element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountain region, Colorado, USA. Chemical Geology, 123, 107–131.CrossRefGoogle Scholar
  16. Cullers, R. L., & Podkovyrov, V. N. (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in Southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Research, 104, 77–93.CrossRefGoogle Scholar
  17. Dey, S., Rai, A. K., & Chaki, A. (2009). Paleoweathering, composition and tectonic of provenance of the Proterozoic intracratonic Kaladgi-Badami basin, Karnataka, Southern India: Evidence from sandstone petrography and geochemistry. Journal of Asian Earth Sciences, 34, 703–715.CrossRefGoogle Scholar
  18. Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., et al. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235.CrossRefGoogle Scholar
  19. Dickinson, W., & Suczek, C. (1979). Plate tectonics and sandstone compositions. American Association of Petroleum, Geological Bulletin, 63, 2164–2182.Google Scholar
  20. Diskin, S., Evans, J., Fowler, M. B., & Guion, P. D. (2011). Recognising different sediment provenances within a passive margin setting: Towards characterising a sediment source to the west of the British late Carboniferous sedimentary basin. Chemical Geology, 283, 143–160.CrossRefGoogle Scholar
  21. Drobe, M., López de Luchi, M. G., Steenken, A., Frei, R., Naumann, R., Siegesmund, S., et al. (2009). Provenance of the late Proterozoic to early Cambrian metaclastic sediments of the Sierra de San Luis (Eastern Sierras Pampeanas) and Cordillera Oriental, Argentina. Journal of South American Earth Sciences, 28, 239–262.CrossRefGoogle Scholar
  22. Fedo, C. M., Eriksson, K., & Krogstad, E. J. (1996). Geochemistry of shale from the Archaean (~3.0 Ga) Buhwa Greenstone belt, Zimbabwe: Implications for provenance and source area weathering. Geochimica et Cosmochimica Acta, 60, 1751–1763.CrossRefGoogle Scholar
  23. Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosoils, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.CrossRefGoogle Scholar
  24. Feng, R., & Kerrich, R. (1990). Geochemistry of fine-grained clastic sediments in the Archaean Abitibi greenstone belt, Canada, implication for provenance and tectonic setting. Geochimica et Cosmochimica Acta, 54, 1061–1081.CrossRefGoogle Scholar
  25. Floyd, P. A., Shail, R., Leveridge, B. E., & Franke, W. (1991). Geochemistry and provenance of Rhenohercynian synorogenic sandstones: Implications for tectonic environment discrimination. In A. C. Morton, S. P. Todd, & P. D. W. Haughton (Eds.), Developments in sedimentary provenance (Vol. 57, pp. 173–188). London: Geological Society, London, Special Publications.Google Scholar
  26. Fu, X., Wang, J., Zeng, Y., Tan, F., & Feng, X. (2010). REE geochemistry of marine oil shale from the Changshe Mountain area, Northern Tibet, China. International Journal of Coal Geology, 81, 191–199.CrossRefGoogle Scholar
  27. Gabo-Ratio, J. A. S., Dimalanta, C. B., Asio, M. G., Queaño, K. L., Yumul, G. P., & Imai, A. (2009). Geology and geochemistry of the clastic sequences from Northwestern Panay (Philippines): Implications for provenance and geotectonic setting. Tectonophysics, 479, 111–119.CrossRefGoogle Scholar
  28. Ishiga, H., & Dozen, K. (1997). Geochemical indications of provenance change as recorded in Miocene shales: Opening of the Japan Sea, San’in region, Southwest Japan. Marine Geology, 144, 211–228.CrossRefGoogle Scholar
  29. Jayananda, M., Moyen, J. F., Martin, H., Peucat, J. J., Auvray, B., & Mahabaleswar, B. (2000). Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, Southern India: Constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Research, 99, 225–254.CrossRefGoogle Scholar
  30. Jayaprakash, A. V., Sundaram, V., Hans, S. K., & Mishra, R. N. (1987). Geology of the Kaladgi-Badami basin. Purana basins of Peninsular India (middle to late Proterozoic). Memoir Geological Society of India, 6, 201–226.Google Scholar
  31. Krishna, A. K., Murthy, N. N., & Govil, P. K. (2007). Multielement analysis of soils by wavelength-dispersive X-ray fluorescence spectrometry. Atomic Spectroscopy, 28, 202–214.Google Scholar
  32. LaMaskin, T. A., Dorsey, R., & Vervoort, J. D. (2008). Tectonic controls on mudrock geochemistry, Mesozoic rocks of eastern Oregon and western Idaho, USA: Implications for Cordilleran tectonics. Journal of Sedimentary Research, 78, 765–783.CrossRefGoogle Scholar
  33. Le Maitre, R. W. (1976). Some problems of the projection of chemical data into mineralogical classifications. Contributions to Mineralogy and Petrology, 56, 181–189.CrossRefGoogle Scholar
  34. Madhavaraju, J. (2015). Geochemistry of Late Cretaceous sedimentary rocks of the Cauvery Basin, South India: Constraints on paleoweathering, provenance and end Cretaceous environments. In M. Ramkumar (Ed.), Chemostratigraphy: Concepts, techniques and applications (1st ed., pp. 185–214). Netherlands: Elsevier.CrossRefGoogle Scholar
  35. Madhavaraju, J., & Lee, Y. I. (2010). Influence of Deccan volcanism in the sedimentary rocks of Late Maastrichtian-Danian age of Cauvery basin Southeastern India: Constraints from geochemistry. Current Science, 98, 528–537.Google Scholar
  36. Madhavaraju, J., Loser, H., Lee, Y. I., Lozano-Santacruz, R., & Pi-Puig, T. (2016a). Geochemistry of Lower Cretaceous limestones of the Alisitos Formation, Baja California, Mexico: Implications for REE source and paleo-redox conditions. Journal of South American Earth Sciences, 66, 149–165.CrossRefGoogle Scholar
  37. Madhavaraju, J., Pacheco-Olivas, S. A., González-León, C. M., Espinoza-Maldonado, I. G., Sanchez-Medrano, P. A., et al. (2017). Mineralogy and geochemistry of the lower cretaceous Siliciclastic rocks of the Morita Formation, Sierra San José section, Sonora, Mexico. Journal of South American Earth Sciences.  https://doi.org/10.1016/j.jsames.2017.04.001.CrossRefGoogle Scholar
  38. Madhavaraju, J., & Ramasamy, S. (2002). Petrography and geochemistry of Late Maastrichtian—Early Paleocene sediments of Tiruchirapalli Cretaceous, Tamil Nadu—Paleoweathering and provenance implications. Journal Geological Society of India, 59, 133–142.Google Scholar
  39. Madhavaraju, J., Ramírez-Montoya, E., Monreal, R., González-León, C. M., Pi-Puig, T., Espinoza-Maldonado, I. G., et al. (2016b). Paleoclimate, paleoweathering and paleoredox conditions of Lower Cretaceous shales from the Mural Limestone, Tuape section, Northern Sonora, Mexico: Constraints from clay mineralogy and geochemistry. Revista Mexicana de Ciencias Geológicas, 33, 34–48.Google Scholar
  40. Madhavaraju, J., Tom, M., Lee, Y. I., Balaram, V., Ramasamy, S., Carranza-Edwards, A., et al. (2016c). Provenance and tectonic settings of sands from Puerto Peñasco, Desemboque and Bahia Kino beaches, Gulf of California, Sonora, Mexico. Journal of South American Earth Sciences, 71, 262–275.CrossRefGoogle Scholar
  41. Maynard, J. B., Valloni, R., & Yu, H. (1982). Composition of modern deep sea sands from arc-related basins. Geological Society, London, Special Publications, 10, 551–561.CrossRefGoogle Scholar
  42. McDonough, W. F., & Sun, S. S. (1995). Composition of the earth. Chemical Geology, 120, 223–253.CrossRefGoogle Scholar
  43. McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: Influences of provenance and sedimentary processes. In B. R. Lipin & G. A. McKay (Eds.), Geochemistry and mineralogy of rare earth elements (Vol. 21, pp. 169–200). Washington, DC: Mineralogical Society of Amer.Google Scholar
  44. Merodio, J. C., & Spalletti, L. A. (1990). Geoquímica de pelitas: su empleo en la definición de ambientes sedimentarios y tectónicos para el Ordovícico de la Precordillera Occidental. Revista Asociación Geologica Argentina, 45, 336–345.Google Scholar
  45. Moosavirad, S., Janardhana, M., Sethumadhav, M., Moghadam, M., & Shankara, M. (2011). Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, source weathering and tectonic setting. Chemie der Erde, 71, 279–288.CrossRefGoogle Scholar
  46. Nagarajan, R., Armstrong-Altrin, J. S., Nagendra, R., Madhavaraju, J., & Moutte, J. (2007a). Petrography and geochemistry of terrigenous sedimentary rocks in the Neoproterozoic Rabanpalli Formation, Bhima Basin, southern India: Implications for paleoweathering condition, provenance, and source rock composition. Journal Geological Society of India, 70, 297–312.Google Scholar
  47. Nagarajan, R., Madhavaraju, J., Nagendra, R., Armstrong-Altrin, J. S., & Moutte, J. (2007b). Geochemisrty of Neoproterozoic shales of the Rabanpalli Formation Bhima Basin, Northern Karnataka, Southern India: Implications for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geologicas, 24, 20–30.Google Scholar
  48. Nath, B. N., Kunzendorf, H., & Pluger, W. L. (2000). Influence of provenance, weathering, and sedimentary process on the elemental ratios of the fine-grained fraction of the bedload sediments from the Vembanad Lake and the adjoining continental shelf, Southwest Coast of India. Journal of Sedimentary Research, 70, 1081–1094.CrossRefGoogle Scholar
  49. Nesbitt, H. W., Fedo, C. M., & Young, G. M. (1997). Quartz and feldspar stability, steady and non-steady-state weathering and petrogenesis of siliciclastic sands and muds. Journal of Geology, 105, 173–191.CrossRefGoogle Scholar
  50. Nesbitt, H. W., Markovics, G., & Price, R. C. (1980). Chemical processes affecting alkalies and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44, 1659–1666.CrossRefGoogle Scholar
  51. Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutitas. Nature, 299, 715–717.CrossRefGoogle Scholar
  52. Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1523–1534.CrossRefGoogle Scholar
  53. Nesbitt, H. W., & Young, G. M. (1989). Formation and diagenesis of weathering profiles. Journal of Geology, 97, 129–147.CrossRefGoogle Scholar
  54. Pe-Piper, G., Triantafyllidis, S., & Piper, D. J. W. (2008). Geochemical identification of clastic sediment provenance from known sources of similar geology: The Cretaceous Scotian basin, Canada. Journal of Sedimentary Research, 78, 595–607.CrossRefGoogle Scholar
  55. Purevjav, N., & Roser, B. (2012). Geochemistry of Devonian-Carboniferous clastic sediments of the Tsetserleg terrane, Hangay Basin, Central Mongolia: Provenance, source weathering, and tectonic setting. Island Arc, 21, 270–287.CrossRefGoogle Scholar
  56. Ramachandran, A., Madhavaraju, J., Ramasamy, S., Lee, Y. I., Rao, S., Chawngthu, D. L., et al. (2016). Geochemistry of the Proterozoic clastic rocks of Kerur Formation of Kaladgi-Badami Basin, Northern Karnataka, South India: Implications for paleo weathering and provenance. Turkish Journal of Earth Sciences, 25, 126–144.CrossRefGoogle Scholar
  57. Rashid, S. (2005). The geochemistry of surface soil from the Garhwal region, NW Lesser Himalaya: An evidence for neotectonic activity in the area. Journal of Mineralogical and Petrological Sciences, 100, 175–183.CrossRefGoogle Scholar
  58. Roser, B. P., Cooper, R. A., Nathan, S., & Tulloch, A. J. (1996). Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics, 39, 1–16.CrossRefGoogle Scholar
  59. Roser, B. P., & Korsch, R. J. (1985). Plate tectonics and geochemical composition of sandstones: A discussion. Journal of Geology, 93, 81–84.CrossRefGoogle Scholar
  60. Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.CrossRefGoogle Scholar
  61. Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discrimination function analysis of major-element data. Chemical Geology, 67, 119–139.CrossRefGoogle Scholar
  62. Ryan, K. M., & Williams, D. M. (2007). Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Chemical Geology, 242, 103–125.CrossRefGoogle Scholar
  63. Sawyer, E. W. (1986). The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico metasedimentary belt, Superior Province. Chemical Geology, 55, 77–95.CrossRefGoogle Scholar
  64. Shao, J. A., Liu, F. T., Chen, H., & Han, Q. J. (2001). Relationship between Mesozoic magmatism and subduction in Da Hinggan-Yanshan area. Acta Geologica Sinica, 75, 56–63.Google Scholar
  65. Spalletti, L. A., Merodio, J. C., & Matheos, S. D. (1991). Geoquímica y significado tectónico-depositacional de pelitas y margas Cretácico-Terciarias. Noreste de la Patagonia, República Argentina. Revista geológica de Chile, 20, 3–13.Google Scholar
  66. Spalletti, L. A., Merodio, J. C., & Matheos, S. D. (1992). Composición, procedencia y marco tectónico de sedimentitas eojurásicas (Formación Nestares) del extremo sudeste de la Cuenca Neuquina. Revista de la Asociación Geológica Argentina, 47, 277–286.Google Scholar
  67. Spalletti, L., Queralt, I., Matheos, S., Colombo, F., & Maggi, J. (2008). Sedimentary petrology and geochemistry of siliciclastic rocks from the Upper Jurassic Tordillo Formation (Neuquén Basin, Western Argentina): Implications for provenance and tectonic setting. Journal of South American Earth Sciences, 25, 440–463.CrossRefGoogle Scholar
  68. Taylor, S. R., & Mclennan, S. M. (1985). The continental crust: Its composition and evolution (p. 349). Oxford: Blackwell UK.Google Scholar
  69. Thomas, C. W., & Aitchison, J. (2005). Compositional data analysis of geological variability and process: A case study. Mathematical Geology, 37, 753–772.CrossRefGoogle Scholar
  70. van de Kamp, P. P., & Leake, B. E. (1985). Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Transactions of the Royal Society of Edinburgh, Earth Science, 76, 411–449.CrossRefGoogle Scholar
  71. Verma, S. P. (2010). Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams. Turkish Journal Earth Sciences, 19, 185–238.Google Scholar
  72. Verma, S. P. (2012). Application of multi-dimensional discrimination diagrams and probability calculations to acid rocks from Portugal and Spain. Comunicações Geol., 99, 79–93.Google Scholar
  73. Verma, S. P. (2013). Application of 50 multi-dimensional discrimination diagrams and significance tests to decipher compositional similarities and differences between Hawaiian and Icelandic volcanism. International Geologiy Review, 55, 1553–1572.CrossRefGoogle Scholar
  74. Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133.CrossRefGoogle Scholar
  75. Verma, S. P., & Armstrong-Altrin, J. S. (2016). Geochemical discrimination of silisiclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12.CrossRefGoogle Scholar
  76. Verma, S. P., Guevara, M., & Agrawal, S. (2006). Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. Journal of Earth System Science, 115, 485–528.CrossRefGoogle Scholar
  77. Verma, S. P., Parandinath, K., Verma, S. K., & Agrawal, S. (2013). Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithosphere, 168–169, 113–123.Google Scholar
  78. Wani, H., & Mondal, M. E. A. (2010). Petrological and geochemical evidence of the Paleoproterozoic and the Meso-Neoproterozic sedimentary rocks of the Bastar craton, India Peninsula: Implications on paleoweathering and Proterozoic crustal evolution. Journal of Asian Earth Sciences, 38, 220–232.CrossRefGoogle Scholar
  79. Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archaean shales form the Witwatersrand Supergroup, South Africa. Source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51, 2401–2416.CrossRefGoogle Scholar
  80. Wronkiewicz, D. J., & Condie, K. C. (1989). Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0 Ga old continental craton. Geochimica et Cosmochimica Acta, 53, 537–549.CrossRefGoogle Scholar
  81. Yan, Q. R., Gao, S. L., Wang, Z. Q., Li, J. L., Xiao, W. J., Hou, Q. L., et al. (2002). Geochemical constrains of the sediments on the provenance, depositional environment and tectonic setting of the Songliao prototype basin. Acta Geologica Sinica, 76, 455–462.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • K. Velmurugan
    • 1
  • J. Madhavaraju
    • 2
    Email author
  • V. Balaram
    • 3
  • A. Ramachandran
    • 4
  • S. Ramasamy
    • 1
  • E. Ramirez-Montoya
    • 5
  • J. C. Saucedo-Samaniego
    • 5
  1. 1.Department of Geology, School of Earth and Atmospheric SciencesUniversity of MadrasChennaiIndia
  2. 2.Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de MéxicoHermosilloMexico
  3. 3.Geochemistry DivisionNational Geophysical Research InstituteHyderabadIndia
  4. 4.Department of GeologyAnna University ChennaiChennaiIndia
  5. 5.Posgrado en Ciencias de la Tierra, Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de MéxicoHermosilloMexico

Personalised recommendations