Skip to main content

Abstract

This chapter predominantly discuss about the role of Local site conditions on the amplification of seismic waves and the resulted earthquake disasters. In-depth discussions are made on the various local site conditions which influence the ground shaking. Different available methods for the assessing the local site conditions are presented in this chapter. Various codal provisions for site classifications are also discussed here. This chapter also presents the assessment of local site effect at micro and macro-level using the appropriate methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AFPS, F.A.F.E.E.: Guidelines for Seismic Microzonation Studies. Delegation of Major Risks of the French Ministry of the Environment-Direction for Prevention, Pollution and Risks (1995)

    Google Scholar 

  2. Aki, K.: Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthq. Res. Inst., Univ. Tokyo 35, 415–456 (1957)

    Google Scholar 

  3. Aki, K.: Local site effects on ground motion. In: Earthquake Engineering and Soil Dynamics II-Recent Advances in Ground Motion Evaluation. Geotechnical Special Publication, vol. 20, pp. 103–155 (1988)

    Google Scholar 

  4. Anbazhagan, P.: Site Characterization and Seismic Hazard Analysis with Local Site Effects for Microzonation of Bangalore. Indian Institute of Science, Bangalore (2007)

    Google Scholar 

  5. Andrews, D.: Objective determination of source parameters and similarity of earthquakes of different size. In: Earthquake Source Mechanics, pp. 259–267. American Geophysical Union, Washington (1986)

    Chapter  Google Scholar 

  6. Astroza, M., Monge, J.: Seismic microzones in the city of Santiago. Relation damage-geological unit. In: Proceedings of the Fourth International Conference on Seismic Zonation, vol. 3, pp. 25–29 (1991)

    Google Scholar 

  7. Atkinson, G.M., Cassidy, J.F.: Integrated use of seismograph and strong-motion data to determine soil amplification: response of the Fraser river delta to the Duvall and Georgia Strait earthquakes. Bull. Seismol. Soc. Am. 90(4), 1028–1040 (2000)

    Article  Google Scholar 

  8. Bard, P.Y., Tucker, B.E.: Underground and ridge site effects: a comparison of observation and theory. Bull. Seismol. Soc. Am. 75(4), 905–922 (1985)

    Google Scholar 

  9. Bard, P.Y., Duval, A.M., Lebrun, B., Lachet, C., Riepl J. Hatzfeld, D.: Reliability of the H/V technique for site effects measurement: an experimental assessment. Seventh International Conference on Soil Dynamics and Earthquake Engineering, Istanbul (1997)

    Google Scholar 

  10. Beresnev, I., Wen, K., Yeh, Y.: Nonlinear soil amplification: its corroboration in Taiwan. Bull. Seismol. Soc. Am. 85(2), 496–515 (1995)

    Google Scholar 

  11. Bonilla, L.F., Steidl, J.H., Lindley, G.T., Tumarkin, A.G., Archuleta, R.J.: Site amplification in the San Fernando Valley, California: variability of site-effect estimation using the s-wave, coda, and h/v methods. Bull. Seismol. Soc. Am. 87(3), 710–730 (1997)

    Google Scholar 

  12. Boore, D.: Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull. Seismol. Soc. Am. 73(6A), 1865–1894 (1983)

    Google Scholar 

  13. Boore, D.: Simulation of ground motion using the stochastic method. Pure Appl. Geophys. 160, 635–676 (2003)

    Article  Google Scholar 

  14. Boore, D., Joyner, W., Fumal, T.: Estimation of response spectra and peak accelerations from Western North American earthquakes: an Interim Report. US Geological Survey, Menlo Park (1993)

    Google Scholar 

  15. Borcherdt, R.: Estimates of site-dependent response spectra for design (methodology and justification). Earthq. Spectra 10, 617–617 (1994)

    Article  Google Scholar 

  16. Borcherdt, R.: Preliminary amplification estimates inferred from strong ground motion recordings of the Northridge earthquake of January 17, 1994. In: Proceeding of the International Workshop on Site Response Subjected to Strong Ground Motion (1996)

    Google Scholar 

  17. Borcherdt, R.D.: Empirical evidence for acceleration-dependent amplification factors. Bull. Seismol. Soc. Am. 92(2), 761–782 (2002)

    Article  Google Scholar 

  18. Borcherdt, R., Gibbs, J.: Effects of local geological conditions in the San Francisco bay region on ground motions and the intensities of the 1906 earthquake. Bull. Seismol. Soc. Am. 66(2), 467–500 (1976)

    Google Scholar 

  19. Borcherdt, R.D., Glassmoyer, G.: Influences of local geology on strong and weak ground motions recorded in the San Francisco Bay region, p. 77. US Geological Survey Professional Paper (1994)

    Google Scholar 

  20. Borcherdt, R., Wentworth, C., Glassmoyer, G., Fumal, T., Mork, P., Gibbs, J.: On the observation, characterization and predictive GIS mapping of ground response in the San Francisco Bay region, California. In: Proceedings of 4th International Conference on Seismic Zonation, Stanford, pp. 545–552 (1991)

    Google Scholar 

  21. Bouckovalas, G., Kouretzis, G.: A review of soil and topography effects in Athens 09/07/199 (Greece) earthquake. In: Proceedings of Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, March (in CDROM) (2001)

    Google Scholar 

  22. Bouckovalas, G.D., Papadimitriou, A.G.: Numerical evaluation of slope topography effects on seismic ground motion. Soil Dyn. Earthq. Eng. 25(7), 547–558 (2005)

    Article  Google Scholar 

  23. Brune, J.N.: Preliminary results on topographic seismic amplification effect on a foam rubber model of the topography near Pacoima Dam. In: Proceeding of the 8th World Conference on Earthquake Engineering, vol. 2, pp. 663–670 (1984)

    Google Scholar 

  24. Campillo, M., Bard, P., Nicollin, F., Sánchez-Sesma, F.: The Mexico earthquake of September 19, 1985 – the incident wavefield in Mexico city during the great Michoacán earthquake and its interaction with the deep basin. Earthq. Spectra 4(3), 591–608 (1988)

    Article  Google Scholar 

  25. Chávez-García, F.J., Sánchez, L., Hatzfeld, D.: Topographic site effects and HVSR a comparison between observations and theory. Bull. Seismol. Soc. Am. 86(5), 1559–1573 (1996)

    Google Scholar 

  26. Chouet, B., De Luca, G., Milana, G., Dawson, P., Martini, M., Scarpa, R.: Shallow velocity structure of Stromboli Volcano, Italy, derived from small-aperture array measurements of Strombolian tremor. Bull. Seismol. Soc. Am. 88(3), 653–666 (1998)

    Google Scholar 

  27. Commission on Geosciences, Environment and Resources (CGER): Ground Water at Yucca Mountain: How High Can It Rise? National Academies Press, Washington (1992)

    Google Scholar 

  28. Davis, L.L., West, L.R.: Observed effects of topography on ground motion. Bull. Seismol. Soc. Am. 63(1), 283–298 (1973)

    Google Scholar 

  29. Evernden, J., Thomson, J.: Predicting seismic intensities. In: Evaluating Earthquake Hazards in the Los Angeles Region – An Earth-Science Perspective, vol. 1360, pp. 151–202. US Geological Survey Professional Paper (1985)

    Google Scholar 

  30. Faccioli, E.: Seismic amplification in the presence of geological and topographic irregularities. In: Proceedings of the Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp. 11–15 (1991)

    Google Scholar 

  31. Fah, D., Iodice, C., Suhadolc, P., Panza, G.: Application of numerical simulations for a tentative seismic microzonation of the city of Rome. Ann. Geophys. 38(5–6), 607–615 (1995)

    Google Scholar 

  32. Field, E., Jacob, K.: The theoretical response of sedimentary layers to ambient seismic noise. Geophys. Res. Lett. 20(24), 2925–2928 (1993)

    Article  Google Scholar 

  33. Gazetas, G.: Seismic response of earth dams: some recent developments. Soil Dyn. Earthq. Eng. 6(1), 2–47 (1987)

    Article  Google Scholar 

  34. Gazetas, G., Dakoulas, P.: Seismic analysis and design of rockfill dams: state-of-the-art. Soil Dyn. Earthq. Eng. 11(1), 27–61 (1992)

    Article  Google Scholar 

  35. Geli, L., Bard, P., Jullien, B.: The effect of topography on earthquake ground motion: a review and new results. Bull. Seismol. Soc. Am. 78(1), 42–63 (1988)

    Google Scholar 

  36. Gitterman, Y., Zaslavsky, Y., Shapira, A., Shtivelman, V.: Empirical site response evaluations: case studies in Israel. Soil Dyn. Earthq. Eng. 15(7), 447–463 (1996)

    Article  Google Scholar 

  37. Haghshenas, E., Bard, P., Theodulidis, N.: Empirical evaluation of microtremor h/v spectral ratio. Bull. Earthq. Eng. 6(1), 75–108 (2008)

    Article  Google Scholar 

  38. Hartzell, S.: Earthquake aftershocks as Green’s functions. Geophys. Res. Lett. 5(1), 1–4 (1978)

    Article  Google Scholar 

  39. Hartzell, S., Cranswick, E., Frankel, A., Carver, D., Meremonte, M.: Variability of site response in the Los Angeles urban area. Bull. Seismol. Soc. Am. 87(6), 1377–1400 (1997)

    Google Scholar 

  40. Hartzell, S., Carver, D., Cranswick, E., Frankel, A.: Variability of site response in Seattle, Washington. Bull. Seismol. Soc. Am. 90(5), 1237–1250 (2000)

    Google Scholar 

  41. Hashash, Y.M.A., Groholski, D., Phillips, C., Park, D., Musgrove, M.: DEEPSOIL 4.0, User Manual and Tutorial. US Geological Survey, Washington (2011)

    Google Scholar 

  42. Idriss, I., Sun, J.: User’s Manual for shake91. Center for Geotechnical Modeling, Department of Civil Engineering, University of California, Davis (1992)

    Google Scholar 

  43. Irikura, K.: Semi-empirical estimation of strong ground motions during large earthquakes. Bull. Disaster Prev. Res. Inst. Kyoto Univ. 33(2), 63–104 (1983)

    Google Scholar 

  44. ISSMGE, T.: Manual for Zonation on Seismic Geotechnical Hazard. International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE). The Japanese Geotechnical Society, Tokyo (1999)

    Google Scholar 

  45. James, N.: Site characterization and assessment of various earthquake hazards for micro and macro-level seismic zonations of regions in the peninsular India. Ph.D. thesis, Indian Institute of Science, Bangalore (2013)

    Google Scholar 

  46. James, N., Sitharam, T.: Seismic zonations at micro and macro-level for regions in the peninsular India. Int. J. Geotech. Earthq. Eng. 7(2), 35–63 (2016)

    Article  Google Scholar 

  47. James, N., Sitharam, T., Padmanabhan, G., Pillai, C.: Seismic microzonation of a nuclear power plant site with detailed geotechnical, geophysical and site effect studies. Nat. Hazards 71(1), 419–462 (2014)

    Article  Google Scholar 

  48. Joyner, W., Fumal, T.: Use of measured shear-wave velocity for predicting geologic site effects on strong ground motion. In: Proceeding of the 8th World Conference on Earthquake Engineering, vol. 2, pp. 777–783 (1984)

    Google Scholar 

  49. Kagami, H., Okada, S., Ohta, Y.: Versatile application of dense and precision seismic intensity data by an advanced questionnaire survey. In: Proceeding Ninth World Conference on Earthquake Engineering, vol. 8, pp. 937–942 (1988)

    Google Scholar 

  50. Kanai K., Osada, T., Tanaka, T.: An investigation into the nature of microtremors. Bull. Earthq. Res. Inst. 32, 199–209 (1954)

    Google Scholar 

  51. Kanai, K.: On microtremors VIII. Bull. Earthq. Res. Inst. 39, 97–114 (1961)

    Google Scholar 

  52. Kanai, K., Tanaka, T., Morishita, T., Osada, K.: Observation of microtremors. xi.: Matsushiro earthquake swarm area. Bull. Earthq. Res. Inst. Tokyo Univ. 44(3), 1297–1333 (1967). http://hdl.handle.net/2261/12296

  53. Kaul, M.: Stochastic characterization of earthquakes through their response spectrum. Earthq. Eng. Struct. Dyn. 6(5), 497–509 (1978)

    Article  Google Scholar 

  54. Khoubbi-Al, I., Adams, J.: Local site effects in Ottawa, Canada–first results from a strong motion network. In: Proceedings of the 13th World Conference on Earthquake Engineering, Paper, 2504 (2004)

    Google Scholar 

  55. Konno, K., Ohmachi, T.: Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88(1), 228–241 (1998)

    Google Scholar 

  56. Kramer, S.: Geotechnical Earthquake Engineering. Pearson Education, Delhi (1996). Reprinted 2003

    Google Scholar 

  57. Kumar, A.: Software for generation of spectrum compatible time history. In: 13th World Conference on Earthquake Engineering Vancouver (2004)

    Google Scholar 

  58. Lachet, C., Hatzfeld, D., Bard, P.Y., Theodulidis, N., Papaioannou, C., Savvaidis, A.: Site effects and microzonation in the city of Thessaloniki (Greece) comparison of different approaches. Bull. Seismol. Soc. Am. 86(6), 1692–1703 (1996)

    Google Scholar 

  59. Langston, C.A.: Structure under mount rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res. Solid Earth 84(B9), 4749–4762 (1979)

    Article  Google Scholar 

  60. Lee, M.K., Finn, W.: DESRA-2: dynamic effective stress response analysis of soil deposits with energy transmitting boundary including assessment of liquefaction potential. Department of Civil Engineering, University of British Columbia (1978)

    Google Scholar 

  61. Lee, S.J., Chen, H.W., Liu, Q., Komatitsch, D., Huang, B.S., Tromp, J.: Three-dimensional simulations of seismic-wave propagation in the Taipei basin with realistic topography based upon the spectral-element method. Bull. Seismol. Soc. Am. 98(1), 253–264 (2008)

    Article  Google Scholar 

  62. Lermo, J., Chávez-García, F.J.: Site effect evaluation using spectral ratios with only one station. Bull. Seismol. Soc. Am. 83(5), 1574–1594 (1993)

    Google Scholar 

  63. Loh, C.H., Hwang, J.Y., Shin, T.C.: Observed variation of earthquake motion across a Basin – Taipei city. Earthq. Spectra 14(1), 115–133 (1998)

    Article  Google Scholar 

  64. Ma, S., Archuleta, R.J., Page, M.T.: Effects of large-scale surface topography on ground motions, as demonstrated by a study of the San Gabriel mountains, Los Angeles, California. Bull. Seismol. Soc. Am. 97(6), 2066–2079 (2007)

    Article  Google Scholar 

  65. MacMurdo, J.: Papers relating to the earthquake which occurred in India in 1819. Philos. Mag. 63, 105–177 (1824)

    Google Scholar 

  66. Malagnini, L., Rovelli, A., Hough, S., Seeber, L.: Site amplification estimates in the Garigliano Valley, Central Italy, based on dense array measurements of ambient noise. Bull. Seismol. Soc. Am. 83(6), 1744–1755 (1993)

    Google Scholar 

  67. Mallet, R.: Great Neapolitan Earthquake of 1857. Chapman and Hall, London (1862)

    Google Scholar 

  68. Mayer-Rosa, D., Jimenez, M.: Seismic zoning, recommendations for Switzerland. Landeshydrologie und-geologie, geologischer bericht (1999)

    Google Scholar 

  69. Medvedev, J.: Engineering Seismology, p. 260. Academia Nauk Press, Moscow (1962)

    Google Scholar 

  70. Midorikawa, S.: Prediction of isoseismal map in the Kanto plain due to hypothetical earthquake. J. Struct. Eng. B 33, 43–48 (1987)

    Google Scholar 

  71. Miyakoshi, K., Okada, H.: Estimation of the site response in the Kushiro city, Hokkaido, Japan, using microtremors with seismometer arrays. In: 10th World Conference on Earthquake Engineering (1996)

    Google Scholar 

  72. Moyle, W. Jr.: Ground-water-level monitoring for earthquake prediction; a progress report based on data collected in southern California, 1976–79. Tech. rep., Water Resources Division, US Geological Survey (1980)

    Google Scholar 

  73. Mukhopadhyay, S., Pandey, Y., Dharmaraju, R., Chauhan, P., Singh, P., Dev, A.: Seismic microzonation of Delhi for ground-shaking site effects. Curr. Sci. 82(7), 877–881 (2002)

    Google Scholar 

  74. Nakamura, Y.: A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, vol. 30(1). Railway Technical Research Institute, Quarterly Reports (1989)

    Google Scholar 

  75. Narayan, J., Sharma, M.: Effects of local geology on damage severity during Bhuj, India earthquake. In: 13th World Conference on Earthquake Engineering, Vancouver (2004)

    Google Scholar 

  76. Nath, S., Chatterjee, D., Biswas, N., Dravinski, M., Cole, D., Papageorgiou, A., Rodriguez, J., Poran, C.: Correlation study of shear wave velocity in near surface geological formations in anchorage, Alaska. Earthq. Spectra 13(1), 55–75 (1997)

    Google Scholar 

  77. Neelima Satyam, D., Rao, K.: Microtremor studies for seismic site characterization of Delhi region. In: The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, pp. 2811–2815 (2008)

    Google Scholar 

  78. Fäh, D., Rüttener, E., Noack, T., Kruspan, P.: Microzonation of the city of Basel. J. Seismol. 1(1), 87–102 (1997)

    Google Scholar 

  79. Ohmachi, T., Nakamura, Y., Toshinawa, T.: Ground motion characteristics in the San Francisco bay area detected by microtremor measurements. In: Proceedings of the Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, March, pp. 11–15 (1991)

    Google Scholar 

  80. Ordonez, G.: SHAKE-2000, a Computer Program for the 1-D Analysis of Geotechnical Earthquake Engineering Problems, User’s Manual (2000)

    Google Scholar 

  81. Pedersen, H., Le Brun, B., Hatzfeld, D., Campillo, M., Bard, P.Y.: Ground-motion amplitude across ridges. Bull. Seismol. Soc. Am. 84(6), 1786–1800 (1994)

    Google Scholar 

  82. Phillips, W.S., Aki, K.: Site amplification of coda waves from local earthquakes in central California. Bull. Seismol. Soc. Am. 76(3), 627–648 (1986)

    Google Scholar 

  83. Pitilakis, K.: Site effects. In: Recent Advances in Earthquake Geotechnical Engineering and Microzonation, pp. 139–197. Springer, Dordrecht (2004)

    Google Scholar 

  84. Prevost, J.: DYNA1D: A Computer Program for Nonlinear Seismic Site Response Analysis Technical Documentation. National Center for Earthquake Engineering Research, Buffalo (1989)

    Google Scholar 

  85. Raghu Kanth, S., Iyengar, R.: Estimation of seismic spectral acceleration in peninsular India. J. Earth Syst. Sci. 116(3), 199–214 (2007)

    Article  Google Scholar 

  86. Reid, H.: The California Earthquake of April 18, 1906, vol. 27. Carnegie Institution, Washington (1910)

    Google Scholar 

  87. Riepl, J., Bard, P.Y., Hatzfeld, D., Papaioannou, C., Nechtschein, S.: Detailed evaluation of site-response estimation methods across and along the sedimentary valley of Volvi (Euro-seistest). Bull. Seismol. Soc. Am. 88(2), 488–502 (1998)

    Google Scholar 

  88. Rollins, K., Evans, M., Diehl, N., William D. III: Shear modulus and damping relationships for gravels. J. Geotech. Geoenviron. Eng. 124(5), 396–405 (1998)

    Article  Google Scholar 

  89. Sánchez-Sesma, F.J.: Diffraction of elastic waves by three-dimensional surface irregularities. Bull. Seismol. Soc. Am. 73(6A), 1621–1636 (1983)

    Google Scholar 

  90. Sánchez-Sesma, F.J.: Diffraction of elastic SH waves by wedges. Bull. Seismol. Soc. Am. 75(5), 1435–1446 (1985)

    Google Scholar 

  91. Sánchez-Sesma, F., Chávez-Pérez, S., Suarez, M., Bravo, M., Pérez-Rocha, L.: The méxico earthquake of 19 September 1985 on the seismic response of the valley of méxico. Earthq. Spectra 4(3), 569–589 (1988)

    Google Scholar 

  92. Schnabel, P.: Effects of local geology and distance from source on earthquake ground motions. University of California, Berkeley (1973)

    Google Scholar 

  93. Schnabel, P., Lysmer, J., Seed, H.: SHAKE: a computer program for earthquake response analysis of horizontally layered sites. Earthquake Engineering Research Center. Report No EERC, pp. 72–12 (1972)

    Google Scholar 

  94. Seed, H., Idriss, I.: Influence of soil conditions on ground motions during earthquakes. University of California, Institute of Transportation and Traffic Engineering, Soil Mechanics Laboratory (1969)

    Google Scholar 

  95. Seed, H., Idriss, I.: Soil moduli and damping factors for dynamic response analyses. Report No. EERC 70-10, University of California, Berkeley (1970)

    Google Scholar 

  96. Seed, H., Sun, J.: Implication of site effects in the Mexico city earthquake of 19 September 1985 for earthquake-resistance-design criteria in the San Francisco bay area of California. Report No. UCB/EERC-89/03, University of California, Berkeley (1989)

    Google Scholar 

  97. Semblat, J.F., Duval, A.M., Dangla, P.: Numerical analysis of seismic wave amplification in nice (France) and comparisons with experiments. Soil Dyn. Earthq. Eng. 19(5), 347–362 (2000)

    Article  Google Scholar 

  98. Shima, E.: Seismic microzoning map of Tokyo. In: Proceedings of the Second International Conference on Microzonation, vol. 1, pp. 433–443 (1978)

    Google Scholar 

  99. Slob, S., Hack, R., Scarpas, T., van Bemmelen, B., Duque, A.: A methodology for seismic microzonation using GIS and Shakea case study from Armenia, Colombia. In: Engineering Geology for Developing Countries – Proceedings of 9th Congress of the International Association for Engineering Geology and the Environment, Durban, pp. 16–20 (2002)

    Google Scholar 

  100. Stewart, J., Liu, A., Choi, Y.: Amplification factors for spectral acceleration in tectonically active regions. Bull. Seismol. Soc. Am. 93(1), 332–352 (2003)

    Article  Google Scholar 

  101. Stone, W., Yokel, F., Celebi, M., Hanks, T., Leyendecker, E.: Engineering aspects of the 19 September 1985 Mexico earthquake. US Department of Commerce, National Bureau of Standards, Washington (1987)

    Google Scholar 

  102. Theodulidis, N., Bard, P.Y.: Horizontal to vertical spectral ratio and geological conditions: an analysis of strong motion data from Greece and Taiwan (smart-1). Soil Dyn. Earthq. Eng. 14(3), 177–197 (1995)

    Article  Google Scholar 

  103. Theodulidis, N., Bard, P.Y., Archuleta, R., Bouchon, M.: Horizontal-to-vertical spectral ratio and geological conditions: the case of Garner Valley Downhole Array in southern California. Bull. Seismol. Soc. Am. 86(2), 306–319 (1996)

    Google Scholar 

  104. Tokimatsu, K., Nakajo, Y., Tamura, S.: Horizontal to vertical amplitude ratio of short period microtremors and its relation to site characteristics. J. Struct. Construction Eng. 457, 11–18 (1994)

    Article  Google Scholar 

  105. Topal, T., Doyuran, V., Karahanoğlu, N., Toprak, V., Süzen, M., Yeşilnacar, E.: Microzonation for earthquake hazards: Yenişehir settlement, Bursa, Turkey. Eng. Geol. 70(1), 93–108 (2003)

    Article  Google Scholar 

  106. Towhata, I.: Geotechnical Earthquake Engineering. Springer, Dordrecht (2008)

    Book  Google Scholar 

  107. Trifunac, M.D., Hudson, D.E.: Analysis of the pacoima dam accelerogram – San Fernando, California, earthquake of 1971. Bull. Seismol. Soc. Am. 61(5), 1393–1411 (1971)

    Google Scholar 

  108. Trifunac, M., Todorovska, M.: Nonlinear soil response as a natural passive isolation mechanism – the 1994 Northridge, California, earthquake. Soil Dyn. Earthq. Eng. 17(1), 41–51 (1998)

    Article  Google Scholar 

  109. Udwadia, F., Trifunac, M.: Comparison of earthquake and microtremor ground motions in El centro, California. Bull. Seismol. Soc. Am. 63(4), 1227–1253 (1973)

    Google Scholar 

  110. USGS: Virginia Well Records Sumatra-Andaman Islands Earthquake. USGS News Release (2005)

    Google Scholar 

  111. Vucetic, M., Dobry, R.: Effect of soil plasticity on cyclic response. J. Geotech. Eng. 117(1), 89–107 (1991)

    Article  Google Scholar 

  112. Wills, C.J., Silva, W.: Shear-wave velocity characteristics of geologic units in California. Earthq. Spectra 14(3), 533–556 (1998)

    Article  Google Scholar 

  113. Wood, H.: Distribution of apparent intensity in San Francisco. Report of the State Earthquake Investigation Commission 1(1906), pp. 220–245 (1908)

    Google Scholar 

  114. Yoshida, N., Suetomi, I.: DYNEQ: a computer program for dynamic analysis of level ground based on equivalent linear method. Reports of Engineering Research Institute, Sato Kogyo, pp. 61–70 (1996)

    Google Scholar 

  115. Zare, M., Bard, P.Y., Ghafory-Ashtiany, M.: Site characterizations for the Iranian strong motion network. Soil Dyn. Earthq. Eng. 18(2), 101–123 (1999)

    Article  Google Scholar 

  116. Zhao, F., Zhang, Y.: Artificial ground motion compatible with specified peak velocity and target spectrum. Acta Seismol. Sin. 19(4), 461–471 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sitharam, T.G., James, N., Kolathayar, S. (2018). Local Site Effects for Seismic Zonation. In: Comprehensive Seismic Zonation Schemes for Regions at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-89659-5_5

Download citation

Publish with us

Policies and ethics