Skip to main content

Abstract

This chapter describes different methodologies available for site characterization. The details of different low strain and high strain tests are also listed in this chapter. It also provides procedures for the evaluation of dynamic properties from the laboratory as well as in-situ tests. Further, this chapter also presents site characterization studies carried out at micro as well as macro-level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anbazhagan, P., Sitharam, T.: Mapping of average shear wave velocity for Bangalore region: a case study. J. Environ. Eng. Geophys. 13(2), 69–84 (2008)

    Article  Google Scholar 

  2. Andersen, K.: Cyclic and static laboratory tests on Drammen clay. J. Geotech. Eng. Div. 106(5), 499–529 (1980)

    Google Scholar 

  3. BIS-1893: Indian Standard Criteria for Earthquake Resistant Design of Structures, Part 1 – Genera l Provisions and Buildings. Bureau of Indian Standards, New Delhi (2002)

    Google Scholar 

  4. BIS-2131: Method for Standard Penetration Test for Soils. Bureau of Indian Standards, New Delhi (2002)

    Google Scholar 

  5. Boore, D.M.: Estimating vs (30)(or nehrp site classes) from shallow velocity models (depths < 30 m). Bull. Seismol. Soc. Am. 94(2), 591–597 (2004)

    Article  Google Scholar 

  6. Borcherdt, R.: Estimates of site-dependent response spectra for design (methodology and justification). Earthq. Spectra 10, 617–617 (1994)

    Article  Google Scholar 

  7. Bowles, J.: Foundation Analysis and Design, 5th edn. McGraw-Hill, New Delhi (1988)

    Google Scholar 

  8. BSSC: NEHRP recommended provisions for seismic regulations for new buildings and other structures (FEMA 450), Part 1: Provisions. Building Seismic Safety Council for the Federal Emergency Management Agency, Washington (2003)

    Google Scholar 

  9. Cetin, K., Seed, R., Der Kiureghian, A., Tokimatsu, K., Harder L. Jr., Kayen, R., Moss, R.: Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J. Geotech. Geoenviron. Eng. 130(12), 1314–1340 (2004)

    Article  Google Scholar 

  10. Chiou, B., Youngs, R.: PEER-NGA empirical ground motion model for the average horizontal component of peak acceleration and pseudo-spectral acceleration for spectral periods of 0.01 to 10 seconds. Interim Report Issued for USGS Review (2006)

    Google Scholar 

  11. Eurocode-8: BS-EN 1998-1, Design of structures for earthquake resistance? part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels (2003)

    Google Scholar 

  12. Foti, S.: Multistation methods for geotechnical characterization using surface waves. Ph.D. thesis, Politecnico di Torino (2000)

    Google Scholar 

  13. Fumal, T., Tinsley, J.: Mapping shear-wave velocities of near-surface geologic materials. In: Evaluating Earthquake Hazards in the Los Angeles Region: An Earth-Science Perspective, vol. 1360, pp. 101–126. US Geological Survey Professional Paper (1985)

    Google Scholar 

  14. Hall, L., Bodare, A.: Analyses of the cross-hole method for determining shear wave velocities and damping ratios. Soil Dyn. Earthq. Eng. 20(1), 167–175 (2000)

    Article  Google Scholar 

  15. Hayashi, K., Suzuki, H.: Cmp cross-correlation analysis of multi-channel surface-wave data. Explor. Geophys. 35(1), 7–13 (2004)

    Article  Google Scholar 

  16. IBC: International Building Code. International Code Council, Washington (2009)

    Google Scholar 

  17. Idriss, I., Boulanger, R.: Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dyn. Earthq. Eng. 26(2), 115–130 (2006)

    Article  Google Scholar 

  18. Imai, T.: P and s wave velocities of the ground in Japan. In: Proceeding of the 9th ICSMFE, vol. 2, pp. 257–260 (1977)

    Google Scholar 

  19. Imai, T.: Correlation of n-value with s-wave velocity and shear modulus. In: Proceedings of the Second European Symposium on Penetration Testing, pp. 67–72 (1981)

    Google Scholar 

  20. Imai, T., Yoshimura, Y.: Elastic wave velocity and soil properties in soft soil. Tsuchito-Kiso 18(1), 17–22 (1970)

    Google Scholar 

  21. Imai, T., Yoshimura, M.: The relation of mechanical properties of soils to p and s wave velocities for soil ground in Japan. Urana Research Institute, OYO Corp., Tokyo (1972)

    Google Scholar 

  22. Ishihara, K.: Dynamic properties of soils and gravels from laboratory tests. In: Soil Dynamics and Geotechnical Engineering, pp. 1–17. Balkema, Rotterdam (1993)

    Google Scholar 

  23. Ishihara, K.: Soil Behaviour in Earthquake Geotechnics. Clarendon Press/Oxford University Press, Oxford (1996)

    Google Scholar 

  24. Iyisan, R.: Correlations between shear wave velocity and in-situ penetration test results. Tech. J. Chamber Civil Eng. Turkey 7, 371–374 (1996)

    Google Scholar 

  25. Jafari, M., Asghari, A., Rahmani, I.: Empirical correlation between shear wave velocity (vs) and spt-N value for south of Tehran soils. In: Proceedings of the 4th International Conference on Civil Engineering, Tehran (1997)

    Google Scholar 

  26. James, N.: Site characterization and assessment of various earthquake hazards for micro and macro-level seismic zonations of regions in the peninsular India. Ph.D. thesis, Indian Institute of Science, Bangalore (2013)

    Google Scholar 

  27. James, N., Sitharam, T.: Seismic zonations at micro and macro-level for regions in the peninsular India. Int. J. Geotech. Earthq. Eng. 7(2), 35–63 (2016)

    Article  Google Scholar 

  28. James, N., Sitharam, T., Padmanabhan, G., Pillai, C.: Seismic microzonation of a nuclear power plant site with detailed geotechnical, geophysical and site effect studies. Nat. Hazards 71(1), 419–462 (2014)

    Article  Google Scholar 

  29. Kanai, K., Tanaka, T., Morishita, T., Osada, K.: Observation of microtremors. xi.: Matsushiro earthquake swarm area. Bull. Earthq. Res. Inst. Tokyo Univ. 44(3), 1297–1333 (1967). http://hdl.handle.net/2261/12296

  30. Kokusho, T.: Cyclic triaxial test of dynamic soil properties for wide strain range. Soils Found. 20(2), 45–60 (1980)

    Article  Google Scholar 

  31. Kramer, S.: Geotechnical Earthquake Engineering. Pearson Education, Delhi (1996). Reprinted 2003

    Google Scholar 

  32. Lin, C.P., Chang, C.C., Chang, T.S.: The use of masw method in the assessment of soil liquefaction potential. Soil Dyn. Earthq. Eng. 24(9), 689–698 (2004)

    Article  Google Scholar 

  33. Lunne, T., Robertson, P., Powell, J.: Cone Penetration Testing. Geotechnical Practice (1997)

    Google Scholar 

  34. Mancuso, C.: Damping of soil by cross hole method. In: Proceedings of the International Conference on Soil Mechanics and Foundation Engineering-International Society for Soil Mechanics and Foundation Engineering, vol. 3, pp. 1337–1337. AA Balkema, Rotterdam (1994)

    Google Scholar 

  35. Matsuoka, M., Wakamatsu, K., Fujimoto, K., Midorikawa, S.: Nationwide site amplification zoning using GIS-based Japan engineering geomorphologic classification map. In: Proceedings of the 9th International Conference on Structural Safety and Reliability, pp. 239–246 (2005)

    Google Scholar 

  36. Mayne, P.W., Rix, G.J.: Correlations between shear wave velocity and cone tip resistance in natural clays. Soils Found. 35(2), 107–110 (1995)

    Article  Google Scholar 

  37. NDMA: Geotechnical/Geophysical Investigations for Seismic Microzonation Studies of Urban Centres in India. National Disaster Management Authority, Government of India, New Delhi (2011)

    Google Scholar 

  38. Ohba, S., Toriumi, I.: Dynamic response characteristics of Osaka plain. In: Proceedings of the Annual Meeting AIJ (1970)

    Google Scholar 

  39. Ohsaki, Y., Iwasaki, R.: On dynamic shear moduli and Poisson’s ratios of soil deposits. Soils Found. 13(4), 61–73 (1973)

    Article  Google Scholar 

  40. Ohta, Y., Goto, N.: Empirical shear wave velocity equations in terms of characteristic soil indexes. Earthq. Eng. Struct. Dyn. 6(2), 167–187 (1978)

    Article  Google Scholar 

  41. Okamoto, T., Kokusho, T., Yoshida, Y., Kusuonoki, K.: Comparison of surface versus subsurface wave source for p-s logging in sand layer. In: Proceedings of 44th Annual Conference of the JSCE, vol. 3, pp. 996–997 (1989)

    Google Scholar 

  42. O’Neill, A.: Some pitfalls associated with dominant higher-mode inversion. In: Proceedings of the 8th International Symposium on Recent Advances in Exploration Geophysics, Kyoto University, pp. 48–55 (2004)

    Google Scholar 

  43. Park, C., Miller, R., Xia, J.: Imaging dispersion curves of surface waves on multi-channel record. In: 1998 SEG Annual Meeting (1998)

    Google Scholar 

  44. Park, C., Miller, R., Xia, J.: Multichannel analysis of surface waves MASW. Geophysics 64(3), 800–808 (1999)

    Article  Google Scholar 

  45. Park, C., Heljeson, M., Ivanov, J., Brohammer, M.: Surfseis User’s Manual v 2.0. Kansas Geological Survey, Kansas (2007)

    Google Scholar 

  46. Raghu Kanth, S., Iyengar, R.: Estimation of seismic spectral acceleration in peninsular India. J. Earth Syst. Sci. 116(3), 199–214 (2007)

    Article  Google Scholar 

  47. Raptakis, D., Anastasiadis, A., Pitilakis, K., Lontzetidis, K.: Shear wave velocities and damping of Greek natural soils. In: Proceedings of the 10th European Conference on Earthquake Engineering, vol. 1, pp. 477–482 (1994)

    Google Scholar 

  48. Robertson, P., Wride, C.: Cyclic liquefaction and its evaluation based on the SPT and CPT. In: Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. Technical Report NCEER-97-0022, National Center for Earthquake Engineering Research, Buffalo, pp. 41–87 (1997)

    Google Scholar 

  49. Robertson, P., Campanella, R., Wightman, A.: SPT-CPT correlations. J. Geotech. Eng. 109(11), 1449–1459 (1983)

    Article  Google Scholar 

  50. Rodriguez-Marek, A., Bray, J.D., Abrahamson, N.A.: An empirical geotechnical seismic site response procedure. Earthq. Spectra 17(1), 65–87 (2001)

    Article  Google Scholar 

  51. Rogers, J.: Subsurface exploration using the standard penetration test and the cone penetrometer test. Environ. Eng. Geosci. 12(2), 161–179 (2006)

    Article  Google Scholar 

  52. Seed, H., Idriss, I.: Evaluation of liquefaction potential sand deposits based on observation of performance in previous earthquakes. ASCE National Convention (MO), pp. 481–544 (1981)

    Google Scholar 

  53. Seed, H., Idriss, I., Arango, I.: Evaluation of liquefaction potential using field performance data. J. Geotech. Eng. 109(3), 458–482 (1983)

    Article  Google Scholar 

  54. Seed, H., Tokimatsu, K., Harder, L., Chung, R.: Influence of SPT procedures in soil liquefaction resistance evaluations. J. Geotech. Eng. 111(12), 1425–1445 (1985)

    Article  Google Scholar 

  55. Shibata, T.: Analysis of liquefaction of saturated sand during cyclic loading. Disaster Prev. Res. Inst. Bull. 13, 563–570 (1970)

    Google Scholar 

  56. Shtivelman, V.: Surface wave sections as a tool for imaging subsurface inhomogeneities. Eur. J. Environ. Eng. Geophys. 7, 121–138 (2002)

    Google Scholar 

  57. Sitharam, T., Anbazahgan, P.: Report on Seismic Microzonation of Bangalore Urban Centre (Vol. 1). Seismology Division, Ministry of Earth Sciences Government of India, New Delhi (2009)

    Google Scholar 

  58. Sitharam, T., Kolathayar, S., James, N.: Probabilistic assessment of surface level seismic hazard in India using topographic gradient as a proxy for site condition. Geosci. Front. 6(6), 847–859 (2015)

    Article  Google Scholar 

  59. Skempton, A.: Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and over consolidation. Geotechnique 36(3), 425–447 (1986)

    Article  Google Scholar 

  60. Stewart, J., Choi, Y., Liu, A., Baturay, M.: Amplification factors for spectral acceleration in active regions. Report No. PEER-2001/10, Pacific Earthquake Engineering Research Center, University of California, Berkeley, vol. 2001 (2001). http://www.cee.ucla.edu/Faculty/jstewart/publications.htm

  61. Stewart, J., Liu, A., Choi, Y.: Amplification factors for spectral acceleration in tectonically active regions. Bull. Seismol. Soc. Am. 93(1), 332–352 (2003)

    Article  Google Scholar 

  62. Stokoe, K.H., Rix, G.J., Nazarian, S.: In situ seismic testing with surface wave: processing. In: XII International Conference on Soil Mechanics and Foundation Engineering, vol. 33, pp. l–334 (1989)

    Google Scholar 

  63. Sykora, D.W.: Correlations of in situ measurements in sands of shear wave velocity, soil characteristics, and site conditions. Ph.D. thesis, University of Texas at Austin (1983)

    Google Scholar 

  64. Sykora, D.W., Koester, J.P.: Correlations between dynamic shear resistance and standard penetration resistance in soils. In: Earthquake Engineering and Soil Dynamics II: Recent Advances in Ground-Motion Evaluation, pp. 389–404. American Society of Civil Engineers, New York (1988)

    Google Scholar 

  65. Uma Maheswari, R., Boominathan, A., Dodagoudar, G.: Seismic site classification and site period mapping of Chennai city using geophysical and geotechnical data. J. Appl. Geochem. 72(3), 152–168 (2010)

    Google Scholar 

  66. Wald, D., Allen, T.: Topographic slope as a proxy for seismic site conditions and amplification. Bull. Seismol. Soc. Am. 97(5), 1379–1395 (2007)

    Article  Google Scholar 

  67. Wills, C., Petersen, M., Bryant, W., Reichle, M., Saucedo, G., Tan, S., Taylor, G., Treiman, J.: A site-conditions map for California based on geology and shear-wave velocity. Bull. Seismol. Soc. Am. 90(6B), S187–S208 (2000)

    Article  Google Scholar 

  68. Xia, J., Miller, R., Park, C.: Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 64(3), 691–700 (1999)

    Article  Google Scholar 

  69. Xia, J., Miller, R.D., Park, C.B., Hunter, J.A., Harris, J.B., Ivanov, J.: Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil Dyn. Earthq. Eng. 22(3), 181–190 (2002)

    Article  Google Scholar 

  70. Youd, T., Idriss, I., Andrus, R., Arango, I., Castro, G., Christian, J., Dobry, R., W.D., L.F., Harder, L., Hynes, M., Ishihara, K., Koester, J., Laio, S., Marcuson, W., Martin, G., Mitchell, J., Moriwaki, Y., Power, M., Robertson, P., Seed, R., Stokoe, K.: Liquefaction resistance of soils. Summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. J. Geotech. Geoenviron. Eng. 127(10), 817–833 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sitharam, T.G., James, N., Kolathayar, S. (2018). Seismic Site Characterization. In: Comprehensive Seismic Zonation Schemes for Regions at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-89659-5_4

Download citation

Publish with us

Policies and ethics