Thermal Scans for Detecting Hardware Trojans

  • Maxime Cozzi
  • Jean-Marc Galliere
  • Philippe Maurine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10815)

Abstract

It is well known that companies have been outsourcing their IC production to countries where it is simply not possible to guarantee the integrity of final products. This relocation trend creates a need for methodologies and embedded design solutions to identify counterfeits but also to detect potential Hardware Trojans (HT). Hardware Trojans are tiny pieces of hardware that can be maliciously inserted in designs for several purposes ranging from denial of service, programmed obsolescence etc. They are usually stealthy and characterized by small area and power overheads. Their detection is thus a challenging task.

Various solutions have been investigated to detect Hardware Trojans. We focus in this paper on the use of thermal near field scans to that aim. Therefore we first introduce and characterize a low cost, large bandwidth (20 kHz) thermal scanning system with the high detectivity required to detect small Hardware Trojans. Then, we experimentally demonstrate its efficiency on different test cases.

Keywords

Trojan detection Lock-in thermography Thermal mapping Thermal modeling 

References

  1. 1.
    Loai, A., Houssain, H., Al-Somani, T.F.: Review of Side Channel Attacks and Countermeasures on ECC, RSA, and AES CryptosystemsGoogle Scholar
  2. 2.
    Nowroz, A.N., Hu, K., Koushanfar, F., Reda, S.: Novel techniques for high-sensitivity hardware Trojan detection using thermal and power maps. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(12), 1792–1805 (2014)CrossRefGoogle Scholar
  3. 3.
    Ngo, X.T., Najm, Z., Bhasin, S., Guilley, S., Danger, J.L.: Method taking into account process dispersion to detect hardware Trojan Horse by side-channel analysis. J. Cryptogr. Eng. 6, 239–247 (2016)CrossRefGoogle Scholar
  4. 4.
    Balasch, J., Gierlichs, B., Verbauwhede, I.: Electromagnetic circuit fingerprints for hardware Trojan detection. In: IEEE International Symposium on Electromagnetic Compatibility (EMC), Dresden, pp. 246–251 (2015)Google Scholar
  5. 5.
    Zhang, X., Tehranipoor, M.: RON: an on-chip ring oscillator network for hardware Trojan detection. In: Design, Automation and Test in Europe, Grenoble, pp. 1–6 (2011)Google Scholar
  6. 6.
    Lecomte, M., Fournier, J., Maurine, P.: An on-chip technique to detect hardware Trojans and assist counterfeit identification. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25(12), 3317–3330 (2017)CrossRefGoogle Scholar
  7. 7.
    Tan, M.C., Tay, M.Y., Qiu, W., Phoa, S.L.: Fault localization using infra-red lock-in thermography for SOI-based advanced microprocessors. In: Physical and Failure Analysis of Integrated Circuits, IPFA, p. 15 (2011)Google Scholar
  8. 8.
    Hu, K., Nowroz, A.N., Reda, S., Koushanfar, F.: High-sensitivity hardware Trojan detection using multimodal characterization. In: Design, Automation and Test in Europe Conference and Exhibition, DATE, pp. 1271–1276 (2013)Google Scholar
  9. 9.
    Tessier, G., Bardoux, M., Bou, C., Filloy, C., Fournier, D.: Back side thermal imaging of integrated circuits at high spatial resolution. Appl. Phys. Lett. 90(17), 171–172 (2007)CrossRefGoogle Scholar
  10. 10.
    Incropera, F.P., Dewitt, D.P.: Fundamentals of Heat and Mass Transfer, 5th edn, pp. 700–746. Wiley, Hoboken (2001)Google Scholar
  11. 11.
    Breitenstein, O., Warta, W., Langenkamp, M.: Lock-in Thermography, vol. 10. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-02417-7CrossRefGoogle Scholar
  12. 12.
    Cochran, R., Nowroz, A.N., Reda, S.: Post-silicon power characterization using thermal infrared emissions. In: Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 331–336 (2010)Google Scholar
  13. 13.
    Reda, S., Cochran, R., Nowroz, A.N.: Improved thermal tracking for processors using hard and soft sensor allocation techniques. IEEE Trans. Comput. 60(6), 841–851 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)CrossRefGoogle Scholar
  15. 15.
    Reda, S.: Thermal and power characterization of real computing devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 1(2), 76–87 (2011)CrossRefGoogle Scholar
  16. 16.
    Busse, G., Wu, D., Karpen, W.: J. Appl. Phys. 71, 3962 (1992)CrossRefGoogle Scholar
  17. 17.
    Huth, S., Breitenstein, O., Huber, A., Dantz, D., Lambert, U., Altmann, F.: Lock-in IR-thermography-a novel tool for material and device characterization. In: Diffusion and Defect Data Part B Solid State Phenomena, pp. 741–746 (2002)CrossRefGoogle Scholar
  18. 18.
    Nowroz, A., Woods, G., Reda, S.: Improved post-silicon power modeling using AC lock-in techniques. In: 48th ACM/EDAC/IEEE Design Automation Conference, DAC, pp. 101–107 (2011)Google Scholar
  19. 19.
    Nowroz, A.N., Woods, G., Reda, S.: Power mapping of integrated circuits using AC-based thermography. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(8), 1398–1409 (2013)CrossRefGoogle Scholar
  20. 20.
    Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware Trojan: threats and emerging solutions. In: IEEE International High Level Design Validation and Test Workshop, HLDVT 2009, pp. 166–171 (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maxime Cozzi
    • 1
  • Jean-Marc Galliere
    • 1
  • Philippe Maurine
    • 1
  1. 1.LIRMMMontpellierFrance

Personalised recommendations