Skip to main content

Protecting Triple-DES Against DPA

A Practical Application of Domain-Oriented Masking

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10815))

Abstract

Although AES has become the predominant standard for symmetric block ciphers, T-DES is still widely used especially for electronic payment and financial solutions. In order to protect small and embedded devices against power analysis and side-channel attacks in general, appropriate countermeasures have to be considered. In this paper, we present the first practical application of the Domain-Oriented Masking (DOM) scheme for the T-DES cipher in hardware and provide practical evaluation results that confirm the security of DOM and our designs. In particular, using Test Vector Leakage Assessment (TVLA) as evaluation methodology confirms that our first- and second-order secure architectures do not exhibit detectable leakage using up to 2 billion traces. This is the first paper that presents a T-DES hardware implementation using a state of the art provable secure masking technique.

P. Sasdrich—This work was done while the author was at Cryptography Research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s). In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_4

    Chapter  Google Scholar 

  2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_19

    Chapter  Google Scholar 

  3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_18

    Chapter  Google Scholar 

  4. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N.N., Vitkup, V.: Threshold implementations of small S-boxes. Crypt. Commun. 7(1), 3–33 (2015)

    Article  MathSciNet  Google Scholar 

  5. Faust, S., Grosso, V., Del Pozo, S.M., Paglialonga, C., Standaert, F.-X.: Composable masking schemes in the presence of physical defaults and the robust probing model. Cryptology ePrint Archive, Report 2017/711 (2017). https://eprint.iacr.org/2017/711

  6. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel resistance validation. In: NIST Non-invasive Attack Testing Workshop (2011)

    Google Scholar 

  7. Groß, H., Mangard, S.: Reconciling \(d+1\) masking in hardware and software. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 115–136. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_6

    Chapter  Google Scholar 

  8. Groß, H., Mangard, S., Korak, T.: An efficient side-channel protected AES implementation with arbitrary protection order. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_6

    Chapter  Google Scholar 

  9. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  10. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  12. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share threshold implementations for 4-Bit S-boxes. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 99–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40026-1_7

    Chapter  Google Scholar 

  13. Leitold, H., Mayerwieser, W., Payer, U., Posch, K.C., Posch, R., Wolkerstorfer, J.: A 155 Mbps triple-DES network encryptor. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 164–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8_12

    Chapter  Google Scholar 

  14. Maghrebi, H., Danger, J.-L., Flament, F., Guilley, S., Sauvage, L.: Evaluation of countermeasure implementations based on Boolean masking to thwart side-channel attacks. In: International Conference on Signals, Circuits and Systems, SCS 2009, Jerba, Tunisia, 5–8 November 2009, pp. 1–6 (2009)

    Google Scholar 

  15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-38162-6

    Book  MATH  Google Scholar 

  16. McLoone, M., McCanny, J.V.: High-performance FPGA implementation of DES using a novel method for implementing the key schedule. IEE Proc.-Circ. Devices Syst. 150(5), 373–378 (2003)

    Article  Google Scholar 

  17. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_6

    Chapter  Google Scholar 

  18. Nikova, S., Nikov, V., Rijmen, V.: Decomposition of permutations in a finite field. IACR Cryptology ePrint Archive 2018:103 (2018)

    Google Scholar 

  19. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.1007/11935308_38

    Chapter  MATH  Google Scholar 

  20. Oswald, D., Paar, C.: Breaking mifare DESFire MF3ICD40: power analysis and templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 207–222. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_14

    Chapter  Google Scholar 

  21. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-channel resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011)

    Article  MathSciNet  Google Scholar 

  22. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_37

    Chapter  Google Scholar 

  23. Sasdrich, P., Moradi, A., Güneysu, T.: Affine equivalence and its application to tightening threshold implementations. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 263–276. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31301-6_16

    Chapter  Google Scholar 

  24. Sasdrich, P., Moradi, A., Güneysu, T.: Hiding higher-order side-channel leakage. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 131–146. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_8

    Chapter  MATH  Google Scholar 

  25. Sauvage, L., Guilley, S., Danger, J.-L., Mathieu, Y., Nassar, M.: Successful attack on an FPGA-based WDDL DES cryptoprocessor without place and route constraints. In: Design, Automation and Test in Europe, DATE 2009, Nice, France, 20–24 April 2009, pp. 640–645 (2009)

    Google Scholar 

  26. Schneider, T., Moradi, A.: Leakage assessment methodology - extended version. J. Cryptogr. Eng. 6(2), 85–99 (2016)

    Article  Google Scholar 

  27. Standaert, F.-X., Rouvroy, G., Quisquater, J.-J.: FPGA implementations of the DES and triple-des masked against power analysis attacks. In: Proceedings of the 2006 International Conference on Field Programmable Logic and Applications (FPL), Madrid, Spain, 28–30 August 2006, pp. 1–4 (2006)

    Google Scholar 

  28. Trimberger, S., Pang, R., Singh, A.: A 12 Gbps DES encryptor/decryptor core in an FPGA. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 156–163. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8_11

    Chapter  Google Scholar 

  29. Wilcox, D.C., Pierson, L.G., Robertson, P.J., Witzke, E.L., Gass, K.: A DES ASIC suitable for network encryption at 10 Gbps and beyond. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 37–48. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_5

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hutter .

Editor information

Editors and Affiliations

A Representations of all S-boxes and \(4 \times 4\) Permutations

A Representations of all S-boxes and \(4 \times 4\) Permutations

1.1 A.1 Algebraic Normal Form for S-Box 1

figure a

1.2 A.2 Algebraic Normal Form for S-Box 2

figure b

1.3 A.3 Algebraic Normal Form for S-Box 3

figure c

1.4 A.4 Algebraic Normal Form for S-Box 4

figure d

1.5 A.5 Algebraic Normal Form for S-Box 5

figure e

1.6 A.6 Algebraic Normal Form for S-Box 6

figure f

1.7 A.7 Algebraic Normal Form for S-Box 7

figure g

1.8 A.8 Algebraic Normal Form for S-Box 8

figure h

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sasdrich, P., Hutter, M. (2018). Protecting Triple-DES Against DPA. In: Fan, J., Gierlichs, B. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2018. Lecture Notes in Computer Science(), vol 10815. Springer, Cham. https://doi.org/10.1007/978-3-319-89641-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89641-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89640-3

  • Online ISBN: 978-3-319-89641-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics