Skip to main content

Part of the book series: Molecular Pathology Library ((MPLB))

  • 529 Accesses

Abstract

Bone and soft tissue tumors are overall rare but are histologically complex and biologically diverse. Recurring molecular events help define benign and malignant entities as well as confirm the neoplastic nature of lesions previously considered to represent reactive proliferations. In the case of Ewing and Ewing-like sarcomas, molecular features have allowed the definition of distinct disease entities that could not be discriminated reliably based on histomorphology alone. In the future, a more granular classification of bone and soft tissue tumors based in part on their molecular profile may allow better risk stratification and a more personalized treatment approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coffin CM, Alaggio R, Dehner LP. Some general considerations about the clinicopathologic aspects of soft tissue tumors in children and adolescents. Pediatr Dev Pathol. 2012;15(1 Suppl):11–25.

    Article  PubMed  Google Scholar 

  2. Novakovic B. U.S. childhood cancer survival, 1973–1987. Med Pediatr Oncol. 1994;23(6):480–6.

    Article  PubMed  CAS  Google Scholar 

  3. Wu XC, Chen VW, Steele B, Roffers S, Klotz JB, Correa CN, et al. Cancer incidence in adolescents and young adults in the United States, 1992–1997. J Adolesc Health. 2003;32(6):405–15.

    Article  PubMed  Google Scholar 

  4. Hill DA, O’Sullivan MJ, Zhu X, Vollmer RT, Humphrey PA, Dehner LP, et al. Practical application of molecular genetic testing as an aid to the surgical pathologic diagnosis of sarcomas: a prospective study. Am J Surg Pathol. 2002;26(8):965–77.

    Article  PubMed  Google Scholar 

  5. Qualman SJ, Morotti RA. Risk assignment in pediatric soft-tissue sarcomas: an evolving molecular classification. Curr Oncol Rep. 2002;4(2):123–30.

    Article  PubMed  Google Scholar 

  6. Marino-Enriquez A, Bovee JV. Molecular pathogenesis and diagnostic, prognostic and predictive molecular markers in sarcoma. Surg Pathol Clin. 2016;9(3):457–73.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Coffin CM, Dehner LP. Fibroblastic-myofibroblastic tumors in children and adolescents: a clinicopathologic study of 108 examples in 103 patients. Pediatr Pathol. 1991;11(4):569–88.

    Article  PubMed  CAS  Google Scholar 

  8. Oliveira AM, Chou MM. USP6-induced neoplasms: the biologic spectrum of aneurysmal bone cyst and nodular fasciitis. Hum Pathol. 2014;45(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  9. Erickson-Johnson MR, Chou MM, Evers BR, Roth CW, Seys AR, Jin L, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Investig. 2011;91(10):1427–33.

    Article  PubMed  CAS  Google Scholar 

  10. Guo R, Wang X, Chou MM, Asmann Y, Wenger DE, Al-Ibraheemi A, et al. PPP6R3-USP6 amplification: novel oncogenic mechanism in malignant nodular fasciitis. Genes Chromosomes Cancer. 2016;55(8):640–9.

    Article  PubMed  CAS  Google Scholar 

  11. Coffin CM, Hornick JL, Zhou H, Fletcher CD. Gardner fibroma: a clinicopathologic and immunohistochemical analysis of 45 patients with 57 fibromas. Am J Surg Pathol. 2007;31(3):410–6.

    Article  PubMed  Google Scholar 

  12. Dahl NA, Sheil A, Knapke S, Geller JI. Gardner fibroma: clinical and histopathologic implications of germline APC mutation association. J Pediatr Hematol Oncol. 2016;38(5):e154–7.

    Article  PubMed  CAS  Google Scholar 

  13. Ying L, Lin R, Gao Z, Qi J, Zhang Z, Gu W. Primary cardiac tumors in children: a center’s experience. J Cardiothorac Surg. 2016;11(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Scanlan D, Radio SJ, Nelson M, Zhou M, Streblow R, Prasad V, et al. Loss of the PTCH1 gene locus in cardiac fibroma. Cardiovasc Pathol. 2008;17(2):93–7.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang Q, Wang T, Wang D, Liu J, Yu W, Liu X, et al. Somatic copy number losses on chromosome 9q21.33q22.33 encompassing the PTCH1 loci associated with cardiac fibroma. Cancer Genet. 2015;208(12):615–20.

    Article  PubMed  CAS  Google Scholar 

  16. Honeyman JN, Theilen TM, Knowles MA, McGlynn MM, Hameed M, Meyers P, et al. Desmoid fibromatosis in children and adolescents: a conservative approach to management. J Pediatr Surg. 2013;48(1):62–6.

    Article  PubMed  Google Scholar 

  17. Devata S, Chugh R. Desmoid tumors: a comprehensive review of the evolving biology, unpredictable behavior, and myriad of management options. Hematol Oncol Clin North Am. 2013;27(5):989–1005.

    Article  PubMed  Google Scholar 

  18. Fisher C, Thway K. Aggressive fibromatosis. Pathology. 2014;46(2):135–40.

    Article  PubMed  CAS  Google Scholar 

  19. Meazza C, Alaggio R, Ferrari A. Aggressive fibromatosis in children: a changing approach. Minerva Pediatr. 2011;63(4):305–18.

    PubMed  CAS  Google Scholar 

  20. Fetsch JF, Laskin WB, Miettinen M. Palmar-plantar fibromatosis in children and preadolescents: a clinicopathologic study of 56 cases with newly recognized demographics and extended follow-up information. Am J Surg Pathol. 2005;29(8):1095–105.

    PubMed  Google Scholar 

  21. Antaya RJ, Cajaiba MM, Madri J, Lopez MA, Ramirez MC, Martignetti JA, et al. Juvenile hyaline fibromatosis and infantile systemic hyalinosis overlap associated with a novel mutation in capillary morphogenesis protein-2 gene. Am J Dermatopathol. 2007;29(1):99–103.

    Article  PubMed  Google Scholar 

  22. Remberger K, Krieg T, Kunze D, Weinmann HM, Hubner G. Fibromatosis hyalinica multiplex (juvenile hyalin fibromatosis). Light microscopic, electron microscopic, immunohistochemical, and biochemical findings. Cancer. 1985;56(3):614–24.

    Article  PubMed  CAS  Google Scholar 

  23. Cam B, Kurkcu M, Ozturan S, Haytac C, Uguz A, Ogden G. Juvenile hyaline fibromatosis: a case report follow-up after 3 years and a review of the literature. Int J Dermatol. 2015;54(2):217–21.

    Article  PubMed  Google Scholar 

  24. Chung EB, Enzinger FM. Infantile myofibromatosis. Cancer. 1981;48(8):1807–18.

    Article  PubMed  CAS  Google Scholar 

  25. Fletcher CD, Achu P, Van Noorden S, McKee PH. Infantile myofibromatosis: a light microscopic, histochemical and immunohistochemical study suggesting true smooth muscle differentiation. Histopathology. 1987;11(3):245–58.

    Article  PubMed  CAS  Google Scholar 

  26. Zand DJ, Huff D, Everman D, Russell K, Saitta S, McDonald-McGinn D, et al. Autosomal dominant inheritance of infantile myofibromatosis. Am J Med Genet A. 2004;126A(3):261–6.

    Article  PubMed  Google Scholar 

  27. Narchi H. Four half-siblings with infantile myofibromatosis: a case for autosomal-recessive inheritance. Clin Genet. 2001;59(2):134–5.

    Article  PubMed  CAS  Google Scholar 

  28. Stenman G, Nadal N, Persson S, Gunterberg B, Angervall L. del(6)(q12q15) as the sole cytogenetic anomaly in a case of solitary infantile myofibromatosis. Oncol Rep. 1999;6(5):1101–4.

    PubMed  CAS  Google Scholar 

  29. Sirvent N, Perrin C, Lacour JP, Maire G, Attias R, Pedeutour F. Monosomy 9q and trisomy 16q in a case of congenital solitary infantile myofibromatosis. Virchows Arch. 2004;445(5):537–40.

    Article  PubMed  Google Scholar 

  30. Souid AK, Ziemba MC, Dubansky AS, Mazur M, Oliphant M, Thomas FD, et al. Inflammatory myofibroblastic tumor in children. Cancer. 1993;72(6):2042–8.

    Article  PubMed  CAS  Google Scholar 

  31. Lai LM, McCarville MB, Kirby P, Kao SC, Moritani T, Clark E, et al. Shedding light on inflammatory pseudotumor in children: spotlight on inflammatory myofibroblastic tumor. Pediatr Radiol. 2015;45(12):1738–52.

    Article  PubMed  Google Scholar 

  32. Coffin CM, Hornick JL, Fletcher CD. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol. 2007;31(4):509–20.

    Article  PubMed  Google Scholar 

  33. Siminovich M, Galluzzo L, Lopez J, Lubieniecki F, de Davila MT. Inflammatory myofibroblastic tumor of the lung in children: anaplastic lymphoma kinase (ALK) expression and clinico-pathological correlation. Pediatr Dev Pathol. 2012;15(3):179–86.

    Article  PubMed  Google Scholar 

  34. Alassiri AH, Ali RH, Shen Y, Lum A, Strahlendorf C, Deyell R, et al. ETV6-NTRK3 is expressed in a subset of ALK-negative inflammatory myofibroblastic tumors. Am J Surg Pathol. 2016;40(8):1051–61.

    Article  PubMed  Google Scholar 

  35. Antonescu CR, Suurmeijer AJ, Zhang L, Sung YS, Jungbluth AA, Travis WD, et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol. 2015;39(7):957–67.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lovly CM, Gupta A, Lipson D, Otto G, Brennan T, Chung CT, et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov. 2014;4(8):889–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yamamoto H, Yoshida A, Taguchi K, Kohashi K, Hatanaka Y, Yamashita A, et al. ALK, ROS1 and NTRK3 gene rearrangements in inflammatory myofibroblastic tumours. Histopathology. 2016;69(1):72–83.

    Article  PubMed  Google Scholar 

  38. Cook JR, Dehner LP, Collins MH, Ma Z, Morris SW, Coffin CM, et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol. 2001;25(11):1364–71.

    Article  CAS  PubMed  Google Scholar 

  39. Hornick JL, Sholl LM, Dal Cin P, Childress MA, Lovly CM. Expression of ROS1 predicts ROS1 gene rearrangement in inflammatory myofibroblastic tumors. Mod Pathol. 2015;28(5):732–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Coffin CM, Jaszcz W, O’Shea PA, Dehner LP. So-called congenital-infantile fibrosarcoma: does it exist and what is it? Pediatr Pathol. 1994;14(1):133–50.

    Article  PubMed  CAS  Google Scholar 

  41. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18(2):184–7.

    Article  CAS  PubMed  Google Scholar 

  42. Bourgeois JM, Knezevich SR, Mathers JA, Sorensen PH. Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol. 2000;24(7):937–46.

    Article  PubMed  CAS  Google Scholar 

  43. Rubin BP, Chen CJ, Morgan TW, Xiao S, Grier HE, Kozakewich HP, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 1998;153(5):1451–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Schofield DE, Fletcher JA, Grier HE, Yunis EJ. Fibrosarcoma in infants and children. Application of new techniques. Am J Surg Pathol. 1994;18(1):14–24.

    Article  PubMed  CAS  Google Scholar 

  45. Folpe AL, Lane KL, Paull G, Weiss SW. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes: a clinicopathologic study of 73 cases supporting their identity and assessing the impact of high-grade areas. Am J Surg Pathol. 2000;24(10):1353–60.

    Article  PubMed  CAS  Google Scholar 

  46. Prieto-Granada C, Zhang L, Chen HW, Sung YS, Agaram NP, Jungbluth AA, et al. A genetic dichotomy between pure sclerosing epithelioid fibrosarcoma (SEF) and hybrid SEF/low-grade fibromyxoid sarcoma: a pathologic and molecular study of 18 cases. Genes Chromosomes Cancer. 2015;54(1):28–38.

    Article  PubMed  CAS  Google Scholar 

  47. Doyle LA, Moller E, Dal Cin P, Fletcher CD, Mertens F, Hornick JL. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2011;35(5):733–41.

    Article  PubMed  Google Scholar 

  48. Lau PP, Lui PC, Lau GT, Yau DT, Cheung ET, Chan JK. EWSR1-CREB3L1 gene fusion: a novel alternative molecular aberration of low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2013;37(5):734–8.

    Article  PubMed  Google Scholar 

  49. Mertens F, Fletcher CD, Antonescu CR, Coindre JM, Colecchia M, Domanski HA, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Investig. 2005;85(3):408–15.

    Article  PubMed  CAS  Google Scholar 

  50. Panagopoulos I, Storlazzi CT, Fletcher CD, Fletcher JA, Nascimento A, Domanski HA, et al. The chimeric FUS/CREB3l2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer. 2004;40(3):218–28.

    Article  PubMed  CAS  Google Scholar 

  51. Shmookler BM, Enzinger FM, Weiss SW. Giant cell fibroblastoma. A juvenile form of dermatofibrosarcoma protuberans. Cancer. 1989;64(10):2154–61.

    Article  PubMed  CAS  Google Scholar 

  52. Fletcher CD. Giant cell fibroblastoma of soft tissue: a clinicopathological and immunohistochemical study. Histopathology. 1988;13(5):499–508.

    Article  PubMed  CAS  Google Scholar 

  53. Jha P, Moosavi C, Fanburg-Smith JC. Giant cell fibroblastoma: an update and addition of 86 new cases from the Armed Forces Institute of Pathology, in honor of Dr. Franz M. Enzinger. Ann Diagn Pathol. 2007;11(2):81–8.

    Article  PubMed  Google Scholar 

  54. Terrier-Lacombe MJ, Guillou L, Maire G, Terrier P, Vince DR, de Saint Aubain Somerhausen N, et al. Dermatofibrosarcoma protuberans, giant cell fibroblastoma, and hybrid lesions in children: clinicopathologic comparative analysis of 28 cases with molecular data–a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol. 2003;27(1):27–39.

    Article  PubMed  Google Scholar 

  55. Fanburg-Smith JC, Miettinen M. Angiomatoid “malignant” fibrous histiocytoma: a clinicopathologic study of 158 cases and further exploration of the myoid phenotype. Hum Pathol. 1999;30(11):1336–43.

    Article  PubMed  CAS  Google Scholar 

  56. Chen G, Folpe AL, Colby TV, Sittampalam K, Patey M, Chen MG, et al. Angiomatoid fibrous histiocytoma: unusual sites and unusual morphology. Mod Pathol. 2011;24(12):1560–70.

    Article  PubMed  CAS  Google Scholar 

  57. Thway K, Fisher C. Angiomatoid fibrous histiocytoma: the current status of pathology and genetics. Arch Pathol Lab Med. 2015;139(5):674–82.

    Article  PubMed  CAS  Google Scholar 

  58. Uebelhoer M, Natynki M, Kangas J, Mendola A, Nguyen HL, Soblet J, et al. Venous malformation-causative TIE2 mutations mediate an AKT-dependent decrease in PDGFB. Hum Mol Genet. 2013;22(17):3438–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Limaye N, Kangas J, Mendola A, Godfraind C, Schlogel MJ, Helaers R, et al. Somatic activating PIK3CA mutations cause venous malformation. Am J Hum Genet. 2015;97(6):914–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Riant F, Cecillon M, Saugier-Veber P, Tournier-Lasserve E. CCM molecular screening in a diagnosis context: novel unclassified variants leading to abnormal splicing and importance of large deletions. Neurogenetics. 2013;14(2):133–41.

    Article  PubMed  CAS  Google Scholar 

  61. North PE, Waner M, Mizeracki A, Mihm MC Jr. GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol. 2000;31(1):11–22.

    Article  PubMed  CAS  Google Scholar 

  62. Mulliken JB, Enjolras O. Congenital hemangiomas and infantile hemangioma: missing links. J Am Acad Dermatol. 2004;50(6):875–82.

    Article  PubMed  Google Scholar 

  63. Ayturk UM, Couto JA, Hann S, Mulliken JB, Williams KL, Huang AY, et al. Somatic activating mutations in GNAQ and GNA11 are associated with congenital hemangioma. Am J Hum Genet. 2016;98(4):789–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Nakashima M, Miyajima M, Sugano H, Iimura Y, Kato M, Tsurusaki Y, et al. The somatic GNAQ mutation c.548G>A (p.R183Q) is consistently found in Sturge-Weber syndrome. J Hum Genet. 2014;59(12):691–3.

    Article  PubMed  CAS  Google Scholar 

  65. Groesser L, Peterhof E, Evert M, Landthaler M, Berneburg M, Hafner C. BRAF and RAS mutations in sporadic and secondary pyogenic granuloma. J Invest Dermatol. 2015;136(2):481–6.

    Article  CAS  Google Scholar 

  66. Groesser L, Peterhof E, Evert M, Landthaler M, Berneburg M, Hafner C. BRAF and RAS mutations in sporadic and secondary pyogenic granuloma. J Invest Dermatol. 2016;136(2):481–6.

    Article  PubMed  CAS  Google Scholar 

  67. Requena L, Kutzner H. Hemangioendothelioma. Semin Diagn Pathol. 2013;30(1):29–44.

    Article  PubMed  Google Scholar 

  68. Zhou S, Wang L, Panossian A, Anselmo D, Wu S, Venkatramani R. Refractory kaposiform hemangioendothelioma associated with the chromosomal translocation t(13;16)(q14;p13.3). Pediatr Dev Pathol. 2016;19(5):417–20.

    Article  PubMed  Google Scholar 

  69. Lackner H, Karastaneva A, Schwinger W, Benesch M, Sovinz P, Seidel M, et al. Sirolimus for the treatment of children with various complicated vascular anomalies. Eur J Pediatr. 2015;174(12):1579–84.

    Article  PubMed  CAS  Google Scholar 

  70. Stacchiotti S, Provenzano S, Dagrada G, Negri T, Brich S, Basso U, et al. Sirolimus in advanced epithelioid hemangioendothelioma: a retrospective case-series analysis from the Italian rare cancer network database. Ann Surg Oncol. 2016;23(9):2735–44.

    Article  PubMed  Google Scholar 

  71. Oza VS, Mamlouk MD, Hess CP, Mathes EF, Frieden IJ. Role of sirolimus in advanced kaposiform hemangioendothelioma. Pediatr Dermatol. 2016;33(2):e88–92.

    Article  PubMed  Google Scholar 

  72. Flucke U, Vogels RJ, de Saint Aubain Somerhausen N, Creytens DH, Riedl RG, van Gorp JM, et al. Epithelioid hemangioendothelioma: clinicopathologic, immunohistochemical, and molecular genetic analysis of 39 cases. Diagn Pathol. 2014;9:131.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Errani C, Zhang L, Sung YS, Hajdu M, Singer S, Maki RG, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer. 2011;50(8):644–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Tanas MR, Sboner A, Oliveira AM, Erickson-Johnson MR, Hespelt J, Hanwright PJ, et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med. 2011;3(98):98ra82.

    Article  PubMed  CAS  Google Scholar 

  75. Doyle LA, Fletcher CD, Hornick JL. Nuclear expression of CAMTA1 distinguishes epithelioid hemangioendothelioma from histologic mimics. Am J Surg Pathol. 2016;40(1):94–102.

    Article  PubMed  Google Scholar 

  76. Antonescu CR, Le Loarer F, Mosquera JM, Sboner A, Zhang L, Chen CL, et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer. 2013;52(8):775–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Puls F, Niblett A, Clarke J, Kindblom LG, McCulloch T. YAP1-TFE3 epithelioid hemangioendothelioma: a case without vasoformation and a new transcript variant. Virchows Arch. 2015;466(4):473–8.

    Article  PubMed  Google Scholar 

  78. Walther C, Mayrhofer M, Nilsson J, Hofvander J, Jonson T, Mandahl N, et al. Genetic heterogeneity in rhabdomyosarcoma revealed by SNP array analysis. Genes Chromosomes Cancer. 2016;55(1):3–15.

    Article  PubMed  CAS  Google Scholar 

  79. Davicioni E, Anderson MJ, Finckenstein FG, Lynch JC, Qualman SJ, Shimada H, et al. Molecular classification of rhabdomyosarcoma--genotypic and phenotypic determinants of diagnosis: a report from the Children’s oncology group. Am J Pathol. 2009;174(2):550–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hawkins DS, Gupta AA, Rudzinski ER. What is new in the biology and treatment of pediatric rhabdomyosarcoma? Curr Opin Pediatr. 2014;26(1):50–6.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014;4(2):216–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Seki M, Nishimura R, Yoshida K, Shimamura T, Shiraishi Y, Sato Y, et al. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat Commun. 2015;6:7557.

    Article  PubMed  Google Scholar 

  83. Sun W, Chatterjee B, Wang Y, Stevenson HS, Edelman DC, Meltzer PS, et al. Distinct methylation profiles characterize fusion-positive and fusion-negative rhabdomyosarcoma. Mod Pathol. 2015;28(9):1214–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol. 2002;20(11):2672–9.

    Article  PubMed  CAS  Google Scholar 

  85. Alaggio R, Zhang L, Sung YS, Huang SC, Chen CL, Bisogno G, et al. A molecular study of pediatric spindle and sclerosing rhabdomyosarcoma: identification of novel and recurrent VGLL2-related fusions in infantile cases. Am J Surg Pathol. 2016;40(2):224–35.

    PubMed  PubMed Central  Google Scholar 

  86. Agaram NP, Chen CL, Zhang L, LaQuaglia MP, Wexler L, Antonescu CR. Recurrent MYOD1 mutations in pediatric and adult sclerosing and spindle cell rhabdomyosarcomas: evidence for a common pathogenesis. Genes Chromosomes Cancer. 2014;53(9):779–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kohsaka S, Shukla N, Ameur N, Ito T, Ng CK, Wang L, et al. A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet. 2014;46(6):595–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kim SK, Park YK. Ewing sarcoma: a chronicle of molecular pathogenesis. Hum Pathol. 2016;55:91–100.

    Article  PubMed  CAS  Google Scholar 

  89. Berg T, Kalsaas AH, Buechner J, Busund LT. Ewing sarcoma-peripheral neuroectodermal tumor of the kidney with a FUS-ERG fusion transcript. Cancer Genet Cytogenet. 2009;194(1):53–7.

    Article  PubMed  CAS  Google Scholar 

  90. Chen S, Deniz K, Sung YS, Zhang L, Dry S, Antonescu CR. Ewing sarcoma with ERG gene rearrangements: a molecular study focusing on the prevalence of FUS-ERG and common pitfalls in detecting EWSR1-ERG fusions by FISH. Genes Chromosomes Cancer. 2016;55(4):340–9.

    Article  PubMed  CAS  Google Scholar 

  91. Ishida S, Yoshida K, Kaneko Y, Tanaka Y, Sasaki Y, Urano F, et al. The genomic breakpoint and chimeric transcripts in the EWSR1-ETV4/E1AF gene fusion in Ewing sarcoma. Cytogenet Cell Genet. 1998;82(3–4):278–83.

    Article  PubMed  CAS  Google Scholar 

  92. Milione M, Gasparini P, Sozzi G, Mazzaferro V, Ferrari A, Casali PG, et al. Ewing sarcoma of the small bowel: a study of seven cases, including one with the uncommonly reported EWSR1-FEV translocation. Histopathology. 2014;64(7):1014–26.

    Article  PubMed  Google Scholar 

  93. de Alava E, Marcilla D. Birth and evolution of the desmoplastic small round-cell tumor. Semin Diagn Pathol. 2016;33(5):254–61.

    Article  PubMed  Google Scholar 

  94. Romeo S, Dei Tos AP. Soft tissue tumors associated with EWSR1 translocation. Virchows Arch. 2010;456(2):219–34.

    Article  PubMed  CAS  Google Scholar 

  95. Italiano A, Sung YS, Zhang L, Singer S, Maki RG, Coindre JM, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer. 2012;51(3):207–18.

    Article  PubMed  CAS  Google Scholar 

  96. Specht K, Sung YS, Zhang L, Richter GH, Fletcher CD, Antonescu CR. Distinct transcriptional signature and immunoprofile of CIC-DUX4 fusion-positive round cell tumors compared to EWSR1-rearranged Ewing sarcomas: further evidence toward distinct pathologic entities. Genes Chromosomes Cancer. 2014;53(7):622–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Cohen-Gogo S, Cellier C, Coindre JM, Mosseri V, Pierron G, Guillemet C, et al. Ewing-like sarcomas with BCOR-CCNB3 fusion transcript: a clinical, radiological and pathological retrospective study from the Societe Francaise des Cancers de L’Enfant. Pediatr Blood Cancer. 2014;61(12):2191–8.

    Article  PubMed  Google Scholar 

  98. Kao YC, Sung YS, Zhang L, Huang SC, Argani P, Chung CT, et al. Recurrent BCOR internal tandem duplication and YWHAE-NUTM2B fusions in soft tissue undifferentiated round cell sarcoma of infancy: overlapping genetic features with clear cell sarcoma of kidney. Am J Surg Pathol. 2016;40(8):1009–20.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kao YC, Sung YS, Zhang L, Jungbluth AA, Huang SC, Argani P, et al. BCOR overexpression is a highly sensitive marker in round cell sarcomas with BCOR genetic abnormalities. Am J Surg Pathol. 2016;40(12):1670–8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Karlsson J, Valind A, Gisselsson D. BCOR internal tandem duplication and YWHAE-NUTM2B/E fusion are mutually exclusive events in clear cell sarcoma of the kidney. Genes Chromosomes Cancer. 2016;55(2):120–3.

    Article  PubMed  CAS  Google Scholar 

  101. Puls F, Niblett A, Marland G, Gaston CL, Douis H, Mangham DC, et al. BCOR-CCNB3 (Ewing-like) sarcoma: a clinicopathologic analysis of 10 cases, in comparison with conventional Ewing sarcoma. Am J Surg Pathol. 2014;38(10):1307–18.

    Article  PubMed  Google Scholar 

  102. Specht K, Zhang L, Sung YS, Nucci M, Dry S, Vaiyapuri S, et al. Novel BCOR-MAML3 and ZC3H7B-BCOR gene fusions in undifferentiated small blue round cell sarcomas. Am J Surg Pathol. 2016;40(4):433–42.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kawamura-Saito M, Yamazaki Y, Kaneko K, Kawaguchi N, Kanda H, Mukai H, et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet. 2006;15(13):2125–37.

    Article  PubMed  CAS  Google Scholar 

  104. Harms D. Soft tissue sarcomas in the Kiel pediatric tumor registry. Curr Top Pathol. 1995;89:31–45.

    Article  PubMed  CAS  Google Scholar 

  105. Gleason BC, Fletcher CD. Myoepithelial carcinoma of soft tissue in children: an aggressive neoplasm analyzed in a series of 29 cases. Am J Surg Pathol. 2007;31(12):1813–24.

    Article  PubMed  Google Scholar 

  106. Hornick JL, Fletcher CD. Myoepithelial tumors of soft tissue: a clinicopathologic and immunohistochemical study of 101 cases with evaluation of prognostic parameters. Am J Surg Pathol. 2003;27(9):1183–96.

    Article  PubMed  Google Scholar 

  107. Antonescu CR, Zhang L, Chang NE, Pawel BR, Travis W, Katabi N, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer. 2010;49(12):1114–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Brandal P, Panagopoulos I, Bjerkehagen B, Gorunova L, Skjeldal S, Micci F, et al. Detection of a t(1;22)(q23;q12) translocation leading to an EWSR1-PBX1 fusion gene in a myoepithelioma. Genes Chromosomes Cancer. 2008;47(7):558–64.

    Article  PubMed  CAS  Google Scholar 

  109. Casanova M, Ferrari A, Collini P, Bisogno G, Alaggio R, Cecchetto G, et al. Epithelioid sarcoma in children and adolescents: a report from the Italian soft tissue sarcoma committee. Cancer. 2006;106(3):708–17.

    Article  PubMed  Google Scholar 

  110. Thway K, Jones RL, Noujaim J, Fisher C. Epithelioid sarcoma: diagnostic features and genetics. Adv Anat Pathol. 2016;23(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  111. Sapi Z, Papp G, Szendroi M, Papai Z, Plotar V, Krausz T, et al. Epigenetic regulation of SMARCB1 by miR-206, −381 and −671-5p is evident in a variety of SMARCB1 immunonegative soft tissue sarcomas, while miR-765 appears specific for epithelioid sarcoma. A miRNA study of 223 soft tissue sarcomas. Genes Chromosomes Cancer. 2016;55(10):786–802.

    Article  PubMed  CAS  Google Scholar 

  112. Orbach D, Brennan B, Casanova M, Bergeron C, Mosseri V, Francotte N, et al. Paediatric and adolescent alveolar soft part sarcoma: a joint series from European cooperative groups. Pediatr Blood Cancer. 2013;60(11):1826–32.

    Article  PubMed  CAS  Google Scholar 

  113. Jaber OI, Kirby PA. Alveolar soft part sarcoma. Arch Pathol Lab Med. 2015;139(11):1459–62.

    Article  PubMed  CAS  Google Scholar 

  114. Argani P, Lal P, Hutchinson B, Lui MY, Reuter VE, Ladanyi M. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol. 2003;27(6):750–61.

    Article  PubMed  Google Scholar 

  115. Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A, Argani P, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene. 2001;20(1):48–57.

    Article  PubMed  CAS  Google Scholar 

  116. Kerouanton A, Jimenez I, Cellier C, Laurence V, Helfre S, Pannier S, et al. Synovial sarcoma in children and adolescents. J Pediatr Hematol Oncol. 2014;36(4):257–62.

    Article  PubMed  CAS  Google Scholar 

  117. Thway K, Fisher C. Synovial sarcoma: defining features and diagnostic evolution. Ann Diagn Pathol. 2014;18(6):369–80.

    Article  PubMed  Google Scholar 

  118. Antonescu CR, Kawai A, Leung DH, Lonardo F, Woodruff JM, Healey JH, et al. Strong association of SYT-SSX fusion type and morphologic epithelial differentiation in synovial sarcoma. Diagn Mol Pathol. 2000;9(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  119. Ladanyi M, Antonescu CR, Leung DH, Woodruff JM, Kawai A, Healey JH, et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 2002;62(1):135–40.

    PubMed  CAS  Google Scholar 

  120. Althof PA, Ohmori K, Zhou M, Bailey JM, Bridge RS, Nelson M, et al. Cytogenetic and molecular cytogenetic findings in 43 aneurysmal bone cysts: aberrations of 17p mapped to 17p13.2 by fluorescence in situ hybridization. Mod Pathol. 2004;17(5):518–25.

    Article  PubMed  CAS  Google Scholar 

  121. Oliveira AM, Perez-Atayde AR, Inwards CY, Medeiros F, Derr V, Hsi BL, et al. USP6 and CDH11 oncogenes identify the neoplastic cell in primary aneurysmal bone cysts and are absent in so-called secondary aneurysmal bone cysts. Am J Pathol. 2004;165(5):1773–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Oliveira AM, Perez-Atayde AR, Dal Cin P, Gebhardt MC, Chen CJ, Neff JR, et al. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene. 2005;24(21):3419–26.

    Article  PubMed  CAS  Google Scholar 

  123. Fang D, Gan H, Lee JH, Han J, Wang Z, Riester SM, et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science. 2016;352(6291):1344–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Cleven AH, Hocker S, Briaire-de Bruijn I, Szuhai K, Cleton-Jansen AM, Bovee JV. Mutation analysis of H3F3A and H3F3B as a diagnostic tool for giant cell tumor of bone and chondroblastoma. Am J Surg Pathol. 2015;39(11):1576–83.

    Article  PubMed  Google Scholar 

  125. Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet. 2013;45(12):1479–82.

    Article  PubMed  CAS  Google Scholar 

  126. Lu C, Jain SU, Hoelper D, Bechet D, Molden RC, Ran L, et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science. 2016;352(6287):844–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Al-Ibraheemi A, Inwards CY, Zreik RT, Wenger DE, Jenkins SM, Carter JM, et al. Histologic spectrum of giant cell tumor (GCT) of bone in patients 18 years of age and below: a study of 63 patients. Am J Surg Pathol. 2016;40(12):1702–12.

    Article  PubMed  Google Scholar 

  128. Kovac M, Blattmann C, Ribi S, Smida J, Mueller NS, Engert F, et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun. 2015;6:8940.

    Article  PubMed  CAS  Google Scholar 

  129. Jour G, Wang L, Middha S, Zehir A, Chen W, Sadowska J, et al. The molecular landscape of extraskeletal osteosarcoma: a clinicopathological and molecular biomarker study. J Pathol Clin Res. 2016;2(1):9–20.

    Article  PubMed  CAS  Google Scholar 

  130. Righi A, Gambarotti M, Longo S, Benini S, Gamberi G, Cocchi S, et al. Small cell osteosarcoma: clinicopathologic, immunohistochemical, and molecular analysis of 36 cases. Am J Surg Pathol. 2015;39(5):691–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole A. Cipriani MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pytel, P., Cipriani, N.A. (2018). Soft Tissue and Bone Neoplasms. In: Furtado, L., Husain, A. (eds) Precision Molecular Pathology of Neoplastic Pediatric Diseases . Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-319-89626-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89626-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89625-0

  • Online ISBN: 978-3-319-89626-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics