Advertisement

Connectivity Conditions

  • Xueliang Li
  • Colton Magnant
  • Zhongmei Qin
Chapter
  • 304 Downloads
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

In this chapter, we provide several results concerning the proper connection number using connectivity to measure the number of edges and their distribution.

References

  1. 10.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics, vol. 244. Springer, New York (2008)CrossRefGoogle Scholar
  2. 11.
    Borozan, V., Fujita, S., Gerek, A., Magnant, C., Manoussakis, Y., Montero, L., Tuza, Zs.: Proper connection of graphs. Discrete Math. 312(17), 2550–2560 (2012)MathSciNetCrossRefGoogle Scholar
  3. 12.
    Brause, C., Doan, T.D., Schiermeyer, I.: Proper Connection number 2, connectivity, and forbidden subgraph. Electron. Notes Discrete Math. 55, 105–108 (2016)CrossRefGoogle Scholar
  4. 13.
    Brause, C., Doan, T.D., Schiermeyer, I.: Minimum degree conditions for the proper connection number of graphs. Electron. Notes Discrete Math. 55, 109–112 (2016)CrossRefGoogle Scholar
  5. 33.
    Gu, R., Li, X., Qin, Z.: Proper connection number of random graphs. arXiv: 1505.04646v4Google Scholar
  6. 37.
    Huang, F., Li, X., Qin, Z., Magnant, C., Ozeki, K.: On two conjectures about the proper connection number of graphs. Discrete Math. 340(9), 2217–2222 (2017)MathSciNetCrossRefGoogle Scholar
  7. 38.
    Huang, F., Li, X., Wang, S.: Proper connection number and 2-proper connection number of a graph. arXiv:1507.01426Google Scholar
  8. 39.
    Huang, F., Li, X., Wang, S.: Upper bounds of proper connection number of graphs. J. Comb. Optim. 34(1), 165–173 (2017)MathSciNetCrossRefGoogle Scholar
  9. 40.
    Huang, F., Li, X., Wang, S.: Proper connection numbers of complementary graphs. Bull. Malays. Math. Sci. Soc. https://doi.org/10.1007/s40840-016-0381-8
  10. 49.
    Li, X., Magnant, C.: Properly colored notions of connectivity – a dynamic survey. Theory Appl. Graphs 0(1), Art. 2 (2015)Google Scholar
  11. 61.
    Melville R., Goddard, W.: Coloring graphs to produce properly colored walks. Graphs Comb. 33(5), 1271–1281 (2017)MathSciNetCrossRefGoogle Scholar
  12. 63.
    Paulraja, P.: A characterization of Hamiltonian prisms. J. Graph Theory 17(2), 161–171 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Xueliang Li
    • 1
  • Colton Magnant
    • 2
  • Zhongmei Qin
    • 3
  1. 1.Center for CombinatoricsNankai UniversityTianjinChina
  2. 2.Department of MathematicsGeorgia Southern UniversityStatesboroUSA
  3. 3.College of ScienceChang’an UniversityXi’anChina

Personalised recommendations