Other Generalizations

  • Xueliang Li
  • Colton Magnant
  • Zhongmei Qin
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


There have been several generalizations or extensions of the proper connection number. We discuss a few of these in this chapter.


Proper Connection Number Proper Diameter Rainbow Path Permutation Graphs Edge-colored Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 6.
    Bi, Z., Byers, A., Zhang, P.: Proper Hamiltonian-connected graphs. ManuscriptGoogle Scholar
  2. 7.
    Bi, Z., Chartrand, G., Johns, G., Zhang, P.: On minimum spanning subgraphs of graphs with proper connection number 2. Theory Appl. Graphs 3(2), Art. 2 (2016)Google Scholar
  3. 10.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics, vol. 244. Springer, New York (2008)CrossRefGoogle Scholar
  4. 15.
    Chang, H., Li, X., Magnant, C., Qin, Z.: The (k, )-proper index of graphs. arXiv:1606.03872v2Google Scholar
  5. 16.
    Chang, H., Li, X., Qin, Z.: Some upper bounds for the 3-proper index of graphs. Bull. Malays. Math. Sci. Soc.
  6. 17.
    Chartrand, G., Devereaux, S., Zhang, P.: Color-connection and information-transfer paths. ManuscriptGoogle Scholar
  7. 20.
    Chen, L., Li, X., Liu, J.: The k-proper index of graphs. Appl. Math. Comput. 296, 57–63 (2017)MathSciNetGoogle Scholar
  8. 23.
    Coll, V., Hook, J., Magnant, C., McCready, K., Ryan, K.: Proper diameter of graphs. Discuss. Math. Graph Theory (to appear)Google Scholar
  9. 25.
    Devereaux, S., Johns, G., Zhang, P.: Color connection in graphs intermediate to proper and rainbow connection. ManuscriptGoogle Scholar
  10. 42.
    Janson, S., Luczak, T., Ruciński, A.: Random Graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization, xii+333 pp. Wiley, New York (2000)Google Scholar
  11. 52.
    Li, W., Li, X., Zhang, J.: The k-proper index of complete bipartite and complete multipartite graphs. Australas. J. Comb. 68(2), 304–316 (2017)MathSciNetzbMATHGoogle Scholar
  12. 54.
    Li, X., Magnant, C., Wei, M., Zhu, X.: Distance proper connection of graphs. arXiv:1606.06547Google Scholar
  13. 55.
    Li, X., Magnant, C., Wei, M., Zhu, X.: Generalized rainbow connection of graphs and their complements. Discuss. Math. Graph Theory
  14. 61.
    Melville R., Goddard, W.: Coloring graphs to produce properly colored walks. Graphs Comb. 33(5), 1271–1281 (2017)MathSciNetCrossRefGoogle Scholar
  15. 65.
    Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic control. Am. Math. Mon. 46, 281–283 (1939)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Xueliang Li
    • 1
  • Colton Magnant
    • 2
  • Zhongmei Qin
    • 3
  1. 1.Center for CombinatoricsNankai UniversityTianjinChina
  2. 2.Department of MathematicsGeorgia Southern UniversityStatesboroUSA
  3. 3.College of ScienceChang’an UniversityXi’anChina

Personalised recommendations