• Xueliang Li
  • Colton Magnant
  • Zhongmei Qin
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


Graph connectivity has been studied from a variety of perspectives in applications and theoretical endeavors. In this text, we consider properly colored connectivity of graphs, which are motivated by network connectivity and security applications as well as related theoretical notions.


  1. 1.
    Andrews, E., Laforge, E., Lumduanhom, C., Zhang, P.: On proper-path colorings in graphs. J. Combin. Math. Combin. Comput. 97, 189–207 (2016)Google Scholar
  2. 4.
    Bang-Jensen J., Gutin, G.: Alternating cycles and paths in edge-coloured multigraphs: a survey. Discrete Math. 165/166, 39–60 (1997). Graphs and Combinatorics (Marseille, 1995)MathSciNetCrossRefGoogle Scholar
  3. 5.
    Bang-Jensen J., Gutin, G.: Digraphs: Theory, Algorithms and Applications. Springer Monographs in Mathematics, 2nd edn. Springer, London (2009)CrossRefGoogle Scholar
  4. 11.
    Borozan, V., Fujita, S., Gerek, A., Magnant, C., Manoussakis, Y., Montero, L., Tuza, Zs.: Proper connection of graphs. Discrete Math. 312(17), 2550–2560 (2012)MathSciNetCrossRefGoogle Scholar
  5. 18.
    Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in graphs. Math. Bohem. 133(1), 85–98 (2008)Google Scholar
  6. 19.
    Chartrand, G., Lesniak, L., Zhang, P.: Graphs & Digraphs, 5th edn. CRC Press, Boca Raton (2011)Google Scholar
  7. 22.
    Chou, W.S., Manoussakis, Y., Megalakaki, O., Spyratos, M., Tuza, Zs.: Paths through fixed vertices in edge-colored graphs. Math. Inform. Sci. Humaines 127, 49–58 (1994)Google Scholar
  8. 26.
    Dorninger, D.: On permutations of chromosomes. In: Contributions to General Algebra, vol. 5 (Salzburg, 1986), pp. 95–103. Hölder-Pichler-Tempsky, Vienna (1987)Google Scholar
  9. 28.
    Dorninger, D., Timischl, W.: Geometrical constraints on Bennet’s predictions of chromosome order. Heredity 58, 321–325 (1987)CrossRefGoogle Scholar
  10. 45.
    König D.: Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Math. Ann. 77, 453–465 (1916)Google Scholar
  11. 48.
    Laforge, E., Lumduanhom, C., Zhang, P.: Chromatic-connection in graphs. Congressus Numerantium (to appear)Google Scholar
  12. 50.
    Li, X., Sun, Y.: Rainbow Connections of Graphs. Springer Briefs in Mathematics. Springer, New York (2012)Google Scholar
  13. 51.
    Li, X., Sun, Y.: An updated survey on rainbow connections of graphs – a dynamic survey. Theory Appl. Graphs 0(1), Art. 3 (2017)Google Scholar
  14. 56.
    Li, X., Shi, Y., Sun, Y.: Rainbow connections of graphs: a survey. Graphs Comb. 29, 1–38 (2013)MathSciNetCrossRefGoogle Scholar
  15. 62.
    Menger, K.: Zur allgemeinen Kurventheorie. Fundam. Math. 10, 96–115 (1927)CrossRefGoogle Scholar
  16. 67.
    Vizing, V.Z.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz 3, 25–30 (1964)MathSciNetGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Xueliang Li
    • 1
  • Colton Magnant
    • 2
  • Zhongmei Qin
    • 3
  1. 1.Center for CombinatoricsNankai UniversityTianjinChina
  2. 2.Department of MathematicsGeorgia Southern UniversityStatesboroUSA
  3. 3.College of ScienceChang’an UniversityXi’anChina

Personalised recommendations