Skip to main content

Micro-fuel Cells

  • Chapter
  • First Online:
Chalcogenide Materials for Energy Conversion

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In this chapter, special attention is given to the use of chalcogenide materials as tolerant cathodes to the micro-laminar flow fuel cell (μLFFC) and other membrane-less micro-systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sabaté N, Esquivel JP, Santander J, Hauer JG, Verjulio RW, Gràcia I, Salleras M, Calaza C, Figueras E, Cané C, Fonseca L (2014) New approach for batch microfabrication of silicon-based micro fuel cells. Microsyst Technol 20(2):341–348. https://doi.org/10.1007/s00542-013-1781-4

    Article  CAS  Google Scholar 

  2. Esquivel JP, Sabaté N, Santander J, Torres-Herrero N, Gràcia I, Ivanov P, Fonseca L, Cané C (2009) Influence of current collectors design on the performance of a silicon-based passive micro direct methanol fuel cell. J Power Sour 194(1):391–396. https://doi.org/10.1016/j.jpowsour.2009.04.065

    Article  CAS  Google Scholar 

  3. Wang Y, Pham L, Vasconcellos GPSd, Madou M (2010) Fabrication and characterization of micro PEM fuel cells using pyrolyzed carbon current collector plates. J Power Sour 195(15):4796–4803. https://doi.org/10.1016/j.jpowsour.2010.02.050

    Article  CAS  Google Scholar 

  4. Choban ER, Markoski LJ, Wieckowski A, Kenis PJA (2004) Microfluidic fuel cell based on laminar flow. J Power Sour 128(1):54–60. https://doi.org/10.1016/j.jpowsour.2003.11.052

    Article  CAS  Google Scholar 

  5. Choban ER, Waszczuk P, Kenis PJA (2005) Characterization of limiting factors in laminar flow-based membraneless microfuel cells. Electrochem Solid-State Lett 8(7):A348–A352

    Article  CAS  Google Scholar 

  6. Jayashree RS, Gancs L, Choban ER, Primak A, Natarajan D, Markoski LJ, Kenis PJA (2005) Air-breathing laminar flow-based microfluidic fuel cell. J Am Chem Soc 127(48):16758–16759

    Article  CAS  Google Scholar 

  7. Jayashree RS, Egas D, Spendelow JS, Natarajan D, Markoski LJ, Kenis PJA (2006) Air-breathing laminar flow-based direct methanol fuel cell with alkaline electrolyte. Electrochem Solid-State Lett 9(5):A252–A256. https://doi.org/10.1149/1.2185836

    Article  CAS  Google Scholar 

  8. Whipple DT, Jayashree RS, Egas D, Alonso-Vante N, Kenis PJA (2009) Ruthenium cluster-like chalcogenide as a methanol tolerant cathode catalyst in air-breathing laminar flow fuel cells. Electrochim Acta 54(18):4384–4388

    Article  CAS  Google Scholar 

  9. Gago AS, Timperman L, Alonso-Vante N (2011) RuxSey cluster-like as cathode catalyst in a formic acid laminar flow fuel cell. Paper presented at the European Fuel Cell Forum 2011, Kultur- und Kongresszentrum Luzern Lucerne/Switzerland, July 12

    Google Scholar 

  10. Timperman L, Gago AS, Alonso-Vante N (2011) Oxygen reduction reaction increased tolerance and fuel cell performance of Pt and RuxSey onto oxide-carbon composites. J Power Sour 196(9):4290–4297

    Article  CAS  Google Scholar 

  11. Gago AS, Gochi-Ponce Y, Feng Y-J, Esquivel JP, Sabaté N, Santander J, Alonso-Vante N (2012) Tolerant chalcogenide cathodes of membraneless micro fuel cells. Chemsuschem 5(8):1488–1494. https://doi.org/10.1002/cssc.201200009

    Article  CAS  PubMed  Google Scholar 

  12. Ma J, Habrioux A, Morais C, Alonso-Vante N (2014) Electronic modification of Pt via Ti and Se as tolerant cathodes in air-breathing methanol microfluidic fuel cells. Phys Chem Chem Phys 16:13820–13826. https://doi.org/10.1039/c3cp54564d

    Article  CAS  PubMed  Google Scholar 

  13. Zhong H, Tian R, Gong X, Li D, Tang P, Alonso-Vante N, Feng Y (2017) Advanced bifunctional electrocatalyst generated through cobalt phthalocyanine tetrasulfonate intercalated Ni2Fe-layered double hydroxides for a laminar flow unitized regenerative micro-cell. J Power Sour 361:21–30. https://doi.org/10.1016/j.jpowsour.2017.06.057

    Article  CAS  Google Scholar 

  14. Unni SM, Mora-Hernandez JM, Kurungot S, Alonso-Vante N (2015) CoSe2 supported on nitrogen-doped carbon nanohorns as a methanol-tolerant cathode for air-breathing microlaminar flow fuel cells. ChemElectroChem 2(9):1339–1345. https://doi.org/10.1002/celc.201500154

    Article  CAS  Google Scholar 

  15. Xuan J, Wang H, Leung DYC, Leung MKH, Xu H, Zhang L, Shen Y (2013) Theoretical Graetz-Damköhler modeling of an air-breathing microfluidic fuel cell. J Power Sour 231:1–5. https://doi.org/10.1016/j.jpowsour.2012.12.090

    Article  CAS  Google Scholar 

  16. Kjeang E, Djilali N, Sinton D (2009) Microfluidic fuel cells: A review. J Power Sour 186(2):353–369

    Article  CAS  Google Scholar 

  17. Kjeang E, Michel R, Harrington DA, Djilali N, Sinton D (2008) A microfluidic fuel cell with flow-through porous electrodes. J Am Chem Soc 130(12):4000–4006

    Article  CAS  Google Scholar 

  18. Jayashree RS, Mitchell M, Natarajan D, Markoski LJ, Kenis PJA (2007) Microfluidic hydrogen fuel cell with a liquid electrolyte. Langmuir 23(13):6871–6874

    Article  CAS  Google Scholar 

  19. Jayashree RS, Gancs L, Choban ER, Primak A, Natarajan D, Markoski LJ, Kenis PJA (2005) Air-breathing laminar flow-based microfluidic fuel cell. J Am Chem Soc 127(48):16758–16759

    Article  CAS  Google Scholar 

  20. Hollinger AS, Maloney RJ, Markoski LJ, Kenis PJA (2008) Nanoporous separator to minimize fuel crossover in a direct methanol laminar flow fuel cell. In: 214th ECS Meeting, Abstract #701, © The Electrochemical Society, 2008

    Google Scholar 

  21. Hollinger AS, Maloney RJ, Jayashree RS, Natarajan D, Markoski LJ, Kenis PJA (2010) Nanoporous separator and low fuel concentration to minimize crossover in direct methanol laminar flow fuel cells. J Power Sour 195(11):3523–3528

    Article  CAS  Google Scholar 

  22. Sun F, He H, Huo W (2015) Polymer separator and low fuel concentration to minimize crossover in microfluidic direct methanol fuel cells. Int J Energy Res 39(5):643–647

    Article  CAS  Google Scholar 

  23. Ferrigno R, Stroock AD, Clark TD, Mayer M, Whitesides GM (2002) Membraneless vanadium redox fuel cell using laminar flow. J Am Chem Soc 124(44):12930–12931. https://doi.org/10.1021/ja020812q

    Article  CAS  PubMed  Google Scholar 

  24. Choban ER, Spendelow JS, Gancs L, Wieckowski A, Kenis PJA (2005) Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media. Electrochim Acta 50(27):5390–5398. https://doi.org/10.1016/j.electacta.2005.03.019

    Article  CAS  Google Scholar 

  25. Cohen JL, Westly DA, Pechenik A, Abruña HD (2005) Fabrication and preliminary testing of a planar membraneless microchannel fuel cell. J Power Sour 139(1):96–105. https://doi.org/10.1016/j.jpowsour.2004.06.072

    Article  CAS  Google Scholar 

  26. Cohen JL, Volpe DJ, Westly DA, Pechenik A, Abruña HD (2005) A dual electrolyte H2/O2 planar membraneless microchannel fuel cell system with open circuit potentials in excess of 1.4 V. Langmuir 21(8):3544–3550. https://doi.org/10.1021/la0479307

    Article  CAS  PubMed  Google Scholar 

  27. Chen F, Chang M-H, Hsu C-W (2007) Analysis of membraneless microfuel cell using decomposition of hydrogen peroxide in a Y-shaped microchannel. Electrochim Acta 52(25):7270–7277. https://doi.org/10.1016/j.electacta.2007.05.072

    Article  CAS  Google Scholar 

  28. Sung W, Choi J-W (2007) A membraneless microscale fuel cell using non-noble catalysts in alkaline solution. J Power Sour 172(1):198–208. https://doi.org/10.1016/j.jpowsour.2007.07.012

    Article  CAS  Google Scholar 

  29. Hayes JR, Engstrom AM, Friesen C (2008) Orthogonal flow membraneless fuel cell. J Power Sour 183(1):257–259. https://doi.org/10.1016/j.jpowsour.2008.04.061

    Article  CAS  Google Scholar 

  30. Jayashree RS, Yoon SK, Brushett FR, Lopez-Montesinos PO, Natarajan D, Markoski LJ, Kenis PJA (2010) On the performance of membraneless laminar flow-based fuel cells. J Power Sour 195(11):3569–3578

    Article  CAS  Google Scholar 

  31. Salloum KS, Posner JD (2010) Counter flow membraneless microfluidic fuel cell. J Power Sour 195(19):6941–6944. https://doi.org/10.1016/j.jpowsour.2010.03.096

    Article  CAS  Google Scholar 

  32. Morales-Acosta D, Rodríguez GH, Godinez LA, Arriaga LG (2010) Performance increase of microfluidic formic acid fuel cell using Pd/MWCNTs as catalyst. J Power Sour 195(7):1862–1865

    Article  CAS  Google Scholar 

  33. Gago AS, Morales-Acosta D, Arriaga LG, Alonso-Vante N (2011) Carbon supported ruthenium chalcogenide as cathode catalyst in a microfluidic formic acid fuel cell. J Power Sour 196(3):1324–1328

    Article  CAS  Google Scholar 

  34. López-Montesinos PO, Yossakda N, Schmidt A, Brushett FR, Pelton WE, Kenis PJA (2011) Design, fabrication, and characterization of a planar, silicon-based, monolithically integrated micro laminar flow fuel cell with a bridge-shaped microchannel cross-section. J Power Sour 196(10):4638–4645

    Article  Google Scholar 

  35. Salloum KS, Posner JD (2011) A membraneless microfluidic fuel cell stack. J Power Sour 196(3):1229–1234

    Article  CAS  Google Scholar 

  36. Ma J, Gago AS, Alonso-Vante N (2013) Performance study of platinum nanoparticles supported onto MWCNT in a formic acid microfluidic fuel cell system. J Electrochem Soc 160(8):F859–F866. https://doi.org/10.1149/2.101308jes

    Article  CAS  Google Scholar 

  37. Hollinger AS, Kenis PJA (2013) Manufacturing all-polymer laminar flow-based fuel cells. J Power Sour 240:486–493. https://doi.org/10.1016/j.jpowsour.2013.04.053

    Article  CAS  Google Scholar 

  38. Ma J, Habrioux A, Morais C, Alonso-Vante N (2014) Electronic modification of Pt via Ti and Se as tolerant cathodes in air-breathing methanol microfluidic fuel cells. Phys Chem Chem Phys 16(27):13820–13826. https://doi.org/10.1039/C3CP54564D

    Article  CAS  PubMed  Google Scholar 

  39. Hashemi SMH, Neuenschwander M, Hadikhani P, Modestino MA, Psaltis D (2017) Membrane-less micro fuel cell based on two-phase flow. J Power Sour 348:212–218. https://doi.org/10.1016/j.jpowsour.2017.02.079

    Article  CAS  Google Scholar 

  40. Marschewski J, Ruch P, Ebejer N, Huerta Kanan O, Lhermitte G, Cabrol Q, Michel B, Poulikakos D (2017) On the mass transfer performance enhancement of membraneless redox flow cells with mixing promoters. Int J Heat Mass Transf 106:884–894. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.030

    Article  CAS  Google Scholar 

  41. García-Rosado IJ, Uribe-Calderón J, Alonso-Vante N (2017) Nitrogen-doped reduced graphite oxide as a support for CoSe electrocatalyst for oxygen reduction reaction in alkaline media. J Electrochem Soc 164(6):F658–F666. https://doi.org/10.1149/2.1531706jes

    Article  CAS  Google Scholar 

  42. Gochi-Ponce Y, Alonso-Nunez G, Alonso-Vante N (2006) Synthesis and electrochemical characterization of a novel platinum chalcogenide electrocatalyst with an enhanced tolerance to methanol in the oxygen reduction reaction. Electrochem Commun 8(9):1487–1491

    Article  CAS  Google Scholar 

  43. Ma J, Canaff C, Alonso-Vante N (2013) The effect of tuning and origin of tolerance to organics of platinum catalytic centers modified by selenium. physica status solidi (a) 211(9):2030–2034. https://doi.org/10.1002/pssa.201330148

    Article  Google Scholar 

  44. Alonso-Vante N, Schubert B, Tributsch H (1989) Transition metal cluster materials for multi-electron transfer catalysis. Mater Chem Phys 22(3–4):281–307

    Article  CAS  Google Scholar 

  45. Alonso-Vante N (2003) Chevrel phase and cluster-like chalcogenide materials. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells, vol 2. Wiley, Chichester, pp 534–543

    Google Scholar 

  46. Feng Y, Gago AS, Timperman L, Alonso-Vante N (2010) Chalcogenide metal centers for oxygen reduction reaction: activity and tolerance. Electrochim Acta 56(3):1009–1022

    Article  Google Scholar 

  47. Montiel M, García-Rodríguez S, Hernández-Fernández P, Díaz R, Rojas S, Fierro JLG, Fatás E, Ocón P (2010) Relevance of the synthesis route of Se-modified Ru/C as methanol tolerant electrocatalysts for the oxygen reduction reaction. J Power Sour 195(9):2478–2487

    Article  CAS  Google Scholar 

  48. Choi J-H, Johnston CM, Cao D, Babu PK, Zelenay P (2011) Se-modified Ru nanoparticles as ORR catalysts: Part 2: evaluation for use as DMFC cathodes. J Electroanal Chem 662(1):267–273. https://doi.org/10.1016/j.jelechem.2011.07.029

    Article  CAS  Google Scholar 

  49. Neergat M, Gunasekar V, Singh RK (2011) Oxygen reduction reaction and peroxide generation on Ir, Rh, and their selenides—a comparison with Pt and RuSe. J Electrochem Soc 158(9):B1060–B1066. https://doi.org/10.1149/1.3604744

    Article  CAS  Google Scholar 

  50. Gago AS, Luo Y, Alonso-Vante N (2017) Chalcogenide electrocatalysts for energy conversion fuel cell. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.13339-6

  51. Feng YJ, He T, Alonso-Vante N (2010) Carbon-supported CoSe2 nanoparticles for oxygen reduction reaction in acid medium. Fuel Cells 10(1):77–83

    CAS  Google Scholar 

  52. Feng Y, Alonso-Vante N (2012) Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium. Electrochim Acta 72:129–133. https://doi.org/10.1016/j.electacta.2012.04.003

    Article  CAS  Google Scholar 

  53. Yu B, Jin J, Wu H, Wang S, Xia Q, Liu H (2017) Iron and nickel doped CoSe2 as efficient non precious metal catalysts for oxygen reduction. Int J Hydrogen Energy 42(1):236–242. https://doi.org/10.1016/j.ijhydene.2016.10.052

    Article  CAS  Google Scholar 

  54. Verjulio RW, Santander J, Ma J, Alonso-Vante N (2016) Selective CoSe2/C cathode catalyst for passive air-breathing alkaline anion exchange membrane μ-direct methanol fuel cell (AEM-μDMFC). Int J Hydrogen Energy 41(43):19595–19600. https://doi.org/10.1016/j.ijhydene.2016.01.132

    Article  CAS  Google Scholar 

  55. Gago AS, Arriaga LG, Gochi-Ponce Y, Feng YJ, Alonso-Vante N (2010) Oxygen reduction reaction selectivity of RuxSey in formic acid solutions. J Electroanal Chem 648(1):78–84

    Article  CAS  Google Scholar 

  56. Nekooi P, Akbari M, Amini MK (2010) CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst. Int J Hydrogen Energy 35(12):6392–6398. https://doi.org/10.1016/j.ijhydene.2010.03.134

    Article  CAS  Google Scholar 

  57. Gago AS (2011) Développement de systèmes et matériaux pour la conversion de l’énergie chimique et lumineuse. University of Poitiers, Poitiers, France, PhD

    Google Scholar 

  58. Wippermann K, Richter B, Klafki K, Mergel J, Zehl G, Dorbandt I, Bogdanoff P, Fiechter S, Kaytakoglu S (2007) Carbon supported Ru-Se as methanol tolerant catalysts for DMFC cathodes. Part II: preparation and characterization of MEAs. J Appl Electrochem 37(12):1399–1411

    Article  CAS  Google Scholar 

  59. Zehl G, Bogdanoff P, Dorbandt I, Fiechter S, Wippermann K, Hartnig C (2007) Carbon supported Ru–Se as methanol tolerant catalysts for DMFC cathodes. Part I: Preparation and characterization of catalysts. J Appl Electrochem 37(12):1475–1484

    Article  CAS  Google Scholar 

  60. Colmenares L, Jusys Z, Behm RJ (2007) Activity, selectivity, and methanol tolerance of Se-modified Ru/C cathode catalysts. J Phys Chem C 111(3):1273–1283

    Article  CAS  Google Scholar 

  61. Cheng H, Yuan W, Scott K (2007) Influence of thermal treatment on RuSe cathode materials for direct methanol fuel cells. Fuel Cells 7(1):16–20

    Article  CAS  Google Scholar 

  62. Cheng H, Yuan W, Scott K, Browning DJ, Lakeman JB (2007) Evaluation of carbon-supported ruthenium-selenium-tungsten catalysts for direct methanol fuel cells. J Power Sour 172(2):597–603

    Article  CAS  Google Scholar 

  63. Cheng H, Yuan W, Scott K, Browning DJ, Lakeman JB (2007) The catalytic activity and methanol tolerance of transition metal modified-ruthenium-selenium catalysts. Appl Catal B: Environ 75(3–4):221–228

    Article  CAS  Google Scholar 

  64. Papageorgopoulos DC, Liu F, Conrad O (2007) A study of RhxSy/C and RuSex/C as methanol-tolerant oxygen reduction catalysts for mixed-reactant fuel cell applications. Electrochim Acta 52(15):4982–4986

    Article  CAS  Google Scholar 

  65. Alonso-Vante N, Bogdanoff P, Tributsch H (2000) On the origin of the selectivity of oxygen reduction of ruthenium-containing electrocatalysts in methanol-containing electrolyte. J Catal 190(2):240–246

    Article  CAS  Google Scholar 

  66. Boucher AC, Le Rhun V, Hahn F, Alonso-Vante N (2003) The CO-adsorbate electrooxidation on ruthenium cluster-like materials. J Electroanal Chem 554–555(1):379–384

    Article  Google Scholar 

  67. Tritsaris GA, Nørskov JK, Rossmeisl J (2011) Trends in oxygen reduction and methanol activation on transition metal chalcogenides. Electrochim Acta 56(27):9783–9788

    Article  CAS  Google Scholar 

  68. Mora-Hernández JM (2015) Desarrollo de electrocatalizadores a base paladio-calcogenuros de metales de transición y su evaluación electroquímica en reacciones redox de transferencia multi-electrónica para su utilización en pilas micro-fluíidicas a flujo laminar. PhD, Instituto Politecnico Nacional, CD Mexico, Mexico

    Google Scholar 

  69. Sreekuttan MU, Mora-Hernandez JM, Luo Y, Alonso-Vante N (2015) Substrate effects on the catalytic center of CoSe2 for oxygen reduction reaction. ECS Trans 64(36):1–9. https://doi.org/10.1149/06436.0001ecst

    Article  CAS  Google Scholar 

  70. Brushett FR, Zhou W-P, Jayashree RS, Kenis PJA (2009) Alkaline microfluidic hydrogen-oxygen fuel cell as a cathode characterization platform. J Electrochem Soc 156(5):B565–B571

    Article  CAS  Google Scholar 

  71. Brushett FR, Naughton MS, Ng JWD, Yin L, Kenis PJA (2012) Analysis of Pt/C electrode performance in a flowing-electrolyte alkaline fuel cell. Int J Hydrogen Energy 37(3):2559–2570. https://doi.org/10.1016/j.ijhydene.2011.10.078

    Article  CAS  Google Scholar 

  72. Jhong H-R, Brushett FR, Yin L, Stevenson DM, Kenis PJA (2012) Combining structural and electrochemical analysis of electrodes using micro-computed tomography and a microfluidic fuel cell. J Electrochem Soc 159(3):B292–B298. https://doi.org/10.1149/2.033203jes

    Article  CAS  Google Scholar 

  73. Luo Y, Calvillo L, Daiguebonne C, Daletou MK, Granozzi G, Alonso-Vante N (2016) A highly efficient and stable oxygen reduction reaction on Pt/CeOx/C electrocatalyst obtained via a sacrificial precursor based on a metal-organic framework. Appl Catal B: Environ 189:39–50. https://doi.org/10.1016/j.apcatb.2016.02.028

    Article  CAS  Google Scholar 

  74. Luo Y, Kirchhoff B, Fantauzzi D, Calvillo L, Estudillo-Wong LA, Granozzi G, Jacob T, Alonso-Vante N (2018) Molybdenum-doping augments platinum-copper oxygen reduction electrocatalyst. Chemsuschem 11:193–201. https://doi.org/10.1002/cssc.201701822

    Article  CAS  PubMed  Google Scholar 

  75. Zhao T (2009) Micro fuel cells. principles and applications, 1st edn. Academic Press -Elsevier, Burlington, MA, USA; San Diego, California, USA; London UK

    Google Scholar 

  76. Kjeang E (2014) Microfluidic fuel cells and batteries. Springer International Publishing, Cham Heidelberg New York Dordrecht London

    Book  Google Scholar 

  77. Nguyen N-T, Chan SH (2006) Micromachined polymer electrolyte membrane and direct methanol fuel cells—a review. J Micromech Microeng 16(4):R1

    Article  CAS  Google Scholar 

  78. Yang Y, Ye D, Li J, Zhu X, Liao Q, Zhang B (2016) Microfluidic microbial fuel cells: from membrane to membrane free. J Power Sour 324:113–125. https://doi.org/10.1016/j.jpowsour.2016.05.078

    Article  CAS  Google Scholar 

  79. Mora-Hernández J, Luo Y, Alonso-Vante N (2016) What can we learn in electrocatalysis, from nanoparticulated precious and/or non-precious catalytic centers interacting with their support? Catalysts 6(9):145

    Article  Google Scholar 

  80. Mora-Hernández JM, Alonso-Vante N (2018) Membraneless micro fuel cell designs for portable applications. In: Ferreira-Aparicio P, Chaparro AM (eds) Portable hydrogen energy systems. Fuel cells and storage fundamentals and applications. Academic Press-Elsevier (ISBN 9780128131282)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Alonso-Vante .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alonso-Vante, N. (2018). Micro-fuel Cells. In: Chalcogenide Materials for Energy Conversion. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-89612-0_6

Download citation

Publish with us

Policies and ethics