Skip to main content

Fuel Cell Electrocatalysis

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Thermodynamics and kinetics of fuel cell as well as electrolyzer reactions are succinctly revised. In a similar manner, the state-of-the-art knowledge on the activity at the anode and cathode is put into the context of fuel cell and electrolyzer reactions in terms of the Sabatier principle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kunze J, Stimming U (2009) Electrochemical versus heat-engine energy technology: a tribute to Wilhelm Ostwald’s visionary statements. Angew Chem Int Ed 48(49):9230–9237. https://doi.org/10.1002/anie.200903603

    Article  CAS  Google Scholar 

  2. Grove WR (1842) On a gaseous voltaic battery. Philos Mag J Sci 21(140):417–420. https://doi.org/10.1080/14786444208621600

    Article  Google Scholar 

  3. Meldola R (1900) Christian Friedrich Schönbein, 1799–1868. Ein Blatt zur Geschichte des 19. Jahrhunderts. Nature 62:97–99. https://doi.org/10.1038/062097a0

    Article  Google Scholar 

  4. Mitlitsky F, Myers B, Weisberg AH (1998) Regenerative fuel cell systems. Energy Fuels 12(1):56–71. https://doi.org/10.1021/ef970151w

    Article  CAS  Google Scholar 

  5. Mitlitsky F, Myers B, Weisberg AH, Molter TM, Smith WF (1999) Reversible (unitised) PEM fuel cell devices. Fuel Cells Bull 2(11):6–11. https://doi.org/10.1016/S1464-2859(00)80110-8

    Article  Google Scholar 

  6. Wang Y, Leung DYC, Xuan J, Wang H (2016) A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells. Renew Sustain Energy Rev 65:961–977. https://doi.org/10.1016/j.rser.2016.07.046

    Article  CAS  Google Scholar 

  7. Newman J, Hoertz PG, Bonino CA, Trainham JA (2012) Review: an economic perspective on liquid solar fuels. J Electrochem Soc 159(10):A1722–A1729. https://doi.org/10.1149/2.046210jes

    Article  CAS  Google Scholar 

  8. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260. https://doi.org/10.1016/j.cattod.2008.08.039

    Article  CAS  Google Scholar 

  9. Kordesch K (1960) Hydrogen-oxygen fuel cells with carbon electrodes. Ind Eng Chem 52(4):296–298. https://doi.org/10.1021/ie50604a024

    Article  CAS  Google Scholar 

  10. Bacon FT (1960) The high pressure hydrogen-oxygen fuel cell. Ind Eng Chem 52(4):301–303. https://doi.org/10.1021/ie50604a027

    Article  CAS  Google Scholar 

  11. Vielstich W, Gasteiger HA, Lamm A, Yokokawa H (eds) (2010) Handbook of fuel cells. Fundamentals, technology, applications, vol 4. Wiley, New York

    Google Scholar 

  12. Nocera DG (2012) The artificial leaf. Acc Chem Res 45(5):767–776. https://doi.org/10.1021/ar2003013

    Article  CAS  PubMed  Google Scholar 

  13. Trasatti S (1986) Absolute electrode potential: an explanatory note. Pure Appl Chem 58(7):955–966

    Article  CAS  Google Scholar 

  14. Trasatti S (1990) The “absolute” electrode potential–the end of the story. Electrochim Acta 35(1):269–271

    Article  CAS  Google Scholar 

  15. Koper MTM, Bouwman E (2010) Electrochemical hydrogen production: bridging homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49(22):3723–3725. https://doi.org/10.1002/anie.201000629

    Article  CAS  Google Scholar 

  16. Koper MTM (2011) Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem 660(2):254–260. https://doi.org/10.1016/j.jelechem.2010.10.004

    Article  CAS  Google Scholar 

  17. Conway BE, Angerstein-Kozlowska H, Sharp WBA, Criddle EE (1973) Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation. Anal Chem 45(8):1331–1336. https://doi.org/10.1021/ac60330a025

    Article  CAS  Google Scholar 

  18. Sabatier P (1911) Hydrogénations et déshydrogénations par catalyse. Ber Dtsch Chem Ges 44(3):1984–2001. https://doi.org/10.1002/cber.19110440303

    Article  CAS  Google Scholar 

  19. Su H-Y, Gorlin Y, Man IC, Calle-Vallejo F, Norskov JK, Jaramillo TF, Rossmeisl J (2012) Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys Chem Chem Phys 14(40):14010–14022. https://doi.org/10.1039/C2CP40841D

    Article  CAS  PubMed  Google Scholar 

  20. Trasatti S (1972) Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem 39(1):163–184. https://doi.org/10.1016/S0022-0728(72)80485-6

    Article  CAS  Google Scholar 

  21. Trasatti S (2009) Electrochemical theory|Hydrogen Evolution A2 - Garche, Jürgen. In: Encyclopedia of electrochemical power sources. Elsevier, Amsterdam, pp 41–48. http://dx.doi.org/10.1016/B978-044452745-5.00022-8

    Chapter  Google Scholar 

  22. Parsons R (1958) The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053–1063. https://doi.org/10.1039/TF9585401053

    Article  CAS  Google Scholar 

  23. Gerischer H (1958) Mechanismus der Elektrolytischen Wasserstoffabscheidung und Adsorptionsenergie von Atomarem Wasserstoff. Bull Soc Chim Belg 67(7–8):506–527. https://doi.org/10.1002/bscb.19580670714

    Article  CAS  Google Scholar 

  24. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23–J26

    Article  Google Scholar 

  25. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1(1):37–46

    Article  Google Scholar 

  26. Cofre P, Sawyer DT (1986) Electrochemical reduction of dioxygen to perhydroxyl (HO2.) in aprotic solvents that contain Broensted acids. Anal Chem 58(6):1057–1062. https://doi.org/10.1021/ac00297a017

    Article  CAS  PubMed  Google Scholar 

  27. Bungs M, Alonso-Vante N, Tributsch H (1990) Non-aqueous oxygen reduction electrochemistry of a transition metal chalcogenide cluster compound. Ber Bunsen-Ges Phys Chem 94:521–528

    Article  CAS  Google Scholar 

  28. Wroblowa HS, Yen Chi P, Razumney G (1976) Electroreduction of oxygen: a new mechanistic criterion. J Electroanal Chem 69(2):195–201

    Article  CAS  Google Scholar 

  29. Du C, Tan Q, Yin G, Zhang J (2014) 5—Rotating disk electrode method. In: Rotating electrode methods and oxygen reduction electrocatalysts. Elsevier, Amsterdam, pp 171–198. http://dx.doi.org/10.1016/B978-0-444-63278-4.00005-7

    Chapter  Google Scholar 

  30. Jia Z, Yin G, Zhang J (2014) 6—Rotating ring-disk electrode method. In: Rotating electrode methods and oxygen reduction electrocatalysts. Elsevier, Amsterdam, pp 199–229. http://dx.doi.org/10.1016/B978-0-444-63278-4.00006-9

    Chapter  Google Scholar 

  31. Alonso-Vante N (2010) Platinum and non-platinum nanomaterials for the molecular oxygen reduction reaction. ChemPhysChem 11(13):2732–2744

    Article  CAS  Google Scholar 

  32. Anderson AB (2012) Insights into electrocatalysis. Phys Chem Chem Phys 14(4):1330–1338. https://doi.org/10.1039/C2CP23616H

    Article  CAS  PubMed  Google Scholar 

  33. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99(1):016105

    Article  CAS  Google Scholar 

  34. Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7):1159–1165. https://doi.org/10.1002/cctc.201000397

    Article  CAS  Google Scholar 

  35. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Article  Google Scholar 

  36. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1(7):552–556. http://www.nature.com/nchem/journal/v1/n7/suppinfo/nchem.367_S1.html

    Article  CAS  Google Scholar 

  37. Trasatti S (1980) Electrocatalysis by oxides—attempt at a unifying approach. J Electroanal Chem 111(1):125–131. https://doi.org/10.1016/S0022-0728(80)80084-2

    Article  CAS  Google Scholar 

  38. Ponce J, Rehspringer JL, Poillerat G, Gautier JL (2001) Electrochemical study of nickel–aluminium–manganese spinel NixAl1−xMn2O4. Electrocatalytical properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media. Electrochim Acta 46(22):3373–3380. https://doi.org/10.1016/s0013-4686(01)00530-8

    Article  CAS  Google Scholar 

  39. Gorlin Y, Lassalle-Kaiser B, Benck JD, Gul S, Webb SM, Yachandra VK, Yano J, Jaramillo TF (2013) In situ x-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J Am Chem Soc 135(23):8525–8534. https://doi.org/10.1021/ja3104632

    Article  CAS  PubMed  Google Scholar 

  40. Suntivich J, Perry EE, Gasteiger HA, Shao-Horn Y (2013) The influence of the cation on the oxygen reduction and evolution activities of oxide surfaces in alkaline electrolyte. Electrocatalysis 4(1):49–55. https://doi.org/10.1007/s12678-012-0118-x

    Article  CAS  Google Scholar 

  41. Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y (2015) Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci 8(5):1404–1427. https://doi.org/10.1039/C4EE03869J

    Article  CAS  Google Scholar 

  42. Busch M, Halck NB, Kramm UI, Siahrostami S, Krtil P, Rossmeisl J (2016) Beyond the top of the volcano?—A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29:126–135. https://doi.org/10.1016/j.nanoen.2016.04.011

    Article  CAS  Google Scholar 

  43. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607(1–2):83–89

    Article  CAS  Google Scholar 

  44. Yeo RS, Orehotsky J, Visscher W, Srinivasan S (1981) Ruthenium-based mixed oxides as electrocatalysts for oxygen evolution in acid electrolytes. J Electrochem Soc 128(9):1900–1904. https://doi.org/10.1149/1.2127761

    Article  CAS  Google Scholar 

  45. Kötz R, Stucki S, Scherson D, Kolb DM (1984) In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J Electroanal Chem 172(1):211–219. https://doi.org/10.1016/0022-0728(84)80187-4

    Article  Google Scholar 

  46. Matsumoto Y, Sato E (1986) Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater Chem Phys 14(5):397–426. https://doi.org/10.1016/0254-0584(86)90045-3

    Article  CAS  Google Scholar 

  47. Yoshida T, Kojima K (2015) Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem Soc Interf 24(2):45–49. https://doi.org/10.1149/2.F03152if

    Article  CAS  Google Scholar 

  48. Garsany Y, Ge J, St-Pierre J, Rocheleau R, Swider-Lyons KE (2014) Analytical procedure for accurate comparison of rotating disk electrode results for the oxygen reduction activity of Pt/C. J Electrochem Soc 161(5):F628–F640. https://doi.org/10.1149/2.036405jes

    Article  CAS  Google Scholar 

  49. Motoo S, Furuya N (1985) Electrochemistry of platinum single crystal surfaces: Part II. Structural effect on formic acid oxidation and poison formation on Pt (111), (100) and (110). J Electroanal Chem 184(2):303–316

    Article  CAS  Google Scholar 

  50. Herrero E, Franaszczuk K, Wieckowski A (1994) Electrochemistry of methanol at low-index crystal planes of platinum—an integrated voltammetric and chronoamperometric study. J Phys Chem 98(19):5074–5083

    Article  CAS  Google Scholar 

  51. Lamy C, Leger JM, Clavilier J, Parsons R (1983) Structural effects in electrocatalysis—a comparative-study of the oxidation of CO, HCOOH and CH3OH on single-crystal Pt electrodes. J Electroanal Chem 150(1–2):71–77

    Article  CAS  Google Scholar 

  52. Clavilier J, Faure R, Guinet G, Durand R (1980) Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the 111 and 110 planes. J Electroanal Chem 107(1):205–209. https://doi.org/10.1016/S0022-0728(79)80022-4

    Article  CAS  Google Scholar 

  53. Huang S-Y, Chang C-M, Yeh C-T (2006) Promotion of platinum-ruthenium catalyst for electro-oxidation of methanol by ceria. J Catal 241(2):400–406

    Article  CAS  Google Scholar 

  54. Alonso-Vante N (2008) Tailoring of metal cluster-like materials for the molecular oxygen reduction reaction. Pure Appl Chem 80(10):2103–2114

    Article  CAS  Google Scholar 

  55. Wanjala BN, Fang B, Loukrakpam R, Chen Y, Engelhard M, Luo J, Yin J, Yang L, Shan S, Zhong C-J (2012) Role of metal coordination structures in enhancement of electrocatalytic activity of ternary nanoalloys for oxygen reduction reaction. ACS Catal 2(5):795–806. https://doi.org/10.1021/cs300080k

    Article  CAS  Google Scholar 

  56. Kim J-H, Chang S, Kim Y-T (2014) Compressive strain as the main origin of enhanced oxygen reduction reaction activity for Pt electrocatalysts on chromium-doped titania support. Appl Catal B: Environ 158–159:112–118. https://doi.org/10.1016/j.apcatb.2014.04.003

    Article  CAS  Google Scholar 

  57. Vogel W, Timperman L, Alonso-Vante N (2010) Probing metal substrate interaction of Pt nanoparticles: Structural XRD analysis and oxygen reduction reaction. Appl Catal A-Gen 377:167–173

    Article  CAS  Google Scholar 

  58. Pedersen AF, Ulrikkeholm ET, Escudero-Escribano M, Johansson TP, Malacrida P, Pedersen CM, Hansen MH, Jensen KD, Rossmeisl J, Friebel D, Nilsson A, Chorkendorff I, Stephens IEL (2016) Probing the nanoscale structure of the catalytically active overlayer on Pt alloys with rare earths. Nano Energy 29:249–260. https://doi.org/10.1016/j.nanoen.2016.05.026

    Article  CAS  Google Scholar 

  59. Feng Y, Alonso-Vante N (2012) Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium. Electrochim Acta 72:129–133. https://doi.org/10.1016/j.electacta.2012.04.003

    Article  CAS  Google Scholar 

  60. Bard AJ, Faulkner LR (2002) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  61. Kibler LA (2003) Preparation and characterization of noble metal single crystal electrode surfaces

    Google Scholar 

  62. Wolfschmidt H, Baier C, Gsell S, Fischer M, Schreck M, Stimming U (2010) STM, SECPM, AFM and electrochemistry on single crystalline surfaces. Materials 3(8):4196

    Article  CAS  Google Scholar 

  63. Biegler T, Rand DAJ, Woods R (1971) Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorption. J Electroanal Chem 29(2):269–277. https://doi.org/10.1016/S0022-0728(71)80089-X

    Article  CAS  Google Scholar 

  64. Wagner FT, Ross PN Jr (1983) Leed analysis of electrode surfaces: structural effects of potentiodynamic cycling on Pt single crystals. J Electroanal Chem 150(1–2):141–164. https://doi.org/10.1016/S0022-0728(83)80198-3

    Article  CAS  Google Scholar 

  65. Climent V, Feliu J (2011) Thirty years of platinum single crystal electrochemistry. J Solid State Electrochem 15(7):1297–1315. https://doi.org/10.1007/s10008-011-1372-1

    Article  CAS  Google Scholar 

  66. Feliu JM, Herrero E (2011) Surface electrochemistry and reactivity. Contrib Sci 6:161–172

    Google Scholar 

  67. Marković NM, Ross PN Jr (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45(4–6):117–229. https://doi.org/10.1016/S0167-5729(01)00022-X

    Article  Google Scholar 

  68. Schmidt TJ, Ross PN, Markovic NM (2001) Temperature-dependent surface electrochemistry on Pt single crystals in alkaline electrolyte: part 1: CO oxidation. J Phys Chem B 105(48):12082–12086. https://doi.org/10.1021/jp0124037

    Article  CAS  Google Scholar 

  69. Strmcnik D, Lopes PP, Genorio B, Stamenkovic VR, Markovic NM (2016) Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29:29–36. https://doi.org/10.1016/j.nanoen.2016.04.017

    Article  CAS  Google Scholar 

  70. Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der V, Paulikas AP, Stamenkovic VR, Markovic NM (2013) Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem 5(4):300–306. http://www.nature.com/nchem/journal/v5/n4/abs/nchem.1574.html#supplementary-information

    Article  CAS  Google Scholar 

  71. Durst J, Siebel A, Simon C, Hasche F, Herranz J, Gasteiger HA (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 7(7):2255–2260. https://doi.org/10.1039/C4EE00440J

    Article  CAS  Google Scholar 

  72. Bonakdarpour A, Dahn TR, Atanasoski RT, Debe MK, Dahn JR (2008) H2O2 release during oxygen reduction reaction on Pt nanoparticles. Electrochem Solid-State Lett 11(11):B208–B211

    Article  CAS  Google Scholar 

  73. Bonakdarpour A, Lefevre M, Yang R, Jaouen F, Dahn T, Dodelet J-P, Dahn JR (2008) Impact of loading in RRDE experiments on Fe–N–C catalysts: two- or four-electron oxygen reduction? Electrochem Solid-State Lett 11(6):B105–B108

    Article  CAS  Google Scholar 

  74. Bonakdarpour A, Delacote C, Yang R, Wieckowski A, Dahn JR (2008) Loading of Se/Ru/C electrocatalyst on a rotating ring-disk electrode and the loading impact on a H2O2 release during oxygen reduction reaction. Electrochem Commun 10(4):611–615

    Article  CAS  Google Scholar 

  75. Inaba M, Yamada H, Tokunaga J, Tasaka A (2004) Effect of agglomeration of Pt/C catalyst on hydrogen peroxide formation. Electrochem Solid-State Lett 7(12):A474–A476

    Article  CAS  Google Scholar 

  76. Timperman L, Feng YJ, Vogel W, Alonso-Vante N (2010) Substrate effect on oxygen reduction electrocatalysis. Electrochim Acta 55(26):7558–7563

    Article  CAS  Google Scholar 

  77. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56(1–2):9–35

    Article  CAS  Google Scholar 

  78. Alonso-Vante N, Colell H, Stimming U, Tributsch H (1993) Anomalous low-temperature kinetic effects for oxygen evolution on RuO2 and Pt electrodes. J Phys Chem 97(29):7381–7384

    Article  CAS  Google Scholar 

  79. Pedersen CM, Escudero-Escribano M, Velázquez-Palenzuela A, Christensen LH, Chorkendorff I, Stephens IEL (2015) Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode: oxygen reduction and hydrogen oxidation in the presence of CO (review article). Electrochim Acta 179:647–657. https://doi.org/10.1016/j.electacta.2015.03.176

    Article  CAS  Google Scholar 

  80. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51

    Article  CAS  Google Scholar 

  81. Timperman L, Luo Y, Alonso-Vante N (2016) On the availability of active sites for the hydrogen peroxide and oxygen reduction reactions on highly dispersed platinum nanoparticles. ChemElectroChem 3(10):1705–1712. https://doi.org/10.1002/celc.201600144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Alonso-Vante .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alonso-Vante, N. (2018). Fuel Cell Electrocatalysis. In: Chalcogenide Materials for Energy Conversion. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-89612-0_2

Download citation

Publish with us

Policies and ethics