Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter summarizes the basic principles of electrochemical thermodynamics and kinetics. Chalcogenide materials from well-defined structure phase to cluster-like material aspects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bard AJ, Faulkner LR (2002) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, NY

    Google Scholar 

  2. Newman J, Thomas-Alyea KE (2004) Electrochemical systems, 3rd edn. Wiley, Inc Publication

    Google Scholar 

  3. Brett CMA, Brett AMO (1993) Electrochemistry—principles, methods, and applications. Oxford University Press, Oxford

    Google Scholar 

  4. Lefrou C, Fabry P, Poignet J-C (2012) Electrochemistry—the basics, 1 edn. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30250-3

    Book  Google Scholar 

  5. Pajkossy T, Kolb DM (2001) Double layer capacitance of Pt(111) single crystal electrodes. Electrochim Acta 46(20–21):3063–3071

    Article  CAS  Google Scholar 

  6. Kornyshev AA (2007) Double-Layer in ionic liquids: paradigm change? J Phys Chem B 111(20):5545–5557

    Article  CAS  PubMed  Google Scholar 

  7. Weaver MJ, Wasileski SA (2001) Influence of double-layer solvation on local versus macroscopic surface potentials on ordered platinum-group metals as sensed by the vibrational stark effect. Langmuir 17(10):3039–3043

    Article  CAS  Google Scholar 

  8. Parsons R (1981) The electrical double-layer at solid-liquid interfaces. J Electroanal Chem 118 (Feb):3–18

    Article  CAS  Google Scholar 

  9. Parsons R (1986) Problems in the interpretation of double-layer measurements on solid metals. J Electrochem Soc 133(3):C128–C128

    Google Scholar 

  10. Parsons R (1990) Electrical double-layer—recent experimental and theoretical developments. Chem Rev 90(5):813–826

    Article  CAS  Google Scholar 

  11. Parsons R (1997) The metal-liquid electrolyte interface. Solid State Ionics 94(1–4):91–98

    Article  CAS  Google Scholar 

  12. Schmickler W, Santos E (2010) Interfacial electrochemistry, 2 edn. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04937-8

    Book  Google Scholar 

  13. Alonso-Vante N, Colell H, Stimming U, Tributsch H (1993) Anomalous low-temperature kinetic effects for oxygen evolution on RuO2 and Pt electrodes. J Phys Chem 97(29):7381–7384

    Article  CAS  Google Scholar 

  14. Bouroushian M (2010) Electrochemistry of metal chalcogenides. Monographs in electrochemistry. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-03967-6

    Book  Google Scholar 

  15. Lotz W (1970) Electron binding energies in free atoms*. J Opt Soc Am 60(2):206–210. https://doi.org/10.1364/JOSA.60.000206

    Article  CAS  Google Scholar 

  16. Jobic S, Brec R, Rouxel J (1992) Occurrence and characterization of anionic bondings in transition metal dichalcogenides. J Alloys Compd 178(1):253–283. https://doi.org/10.1016/0925-8388(92)90269-F

    Article  CAS  Google Scholar 

  17. Jobic S, Deniard P, Brec R, Rouxel J, Jouanneaux A, Fitch AN (1991) Crystal and electronic band structure of IrTe2: evidence of anionic bonds in a CdI2-like arrangement. Zeitschrift für anorganische und allgemeine Chemie 598(1):199–215. https://doi.org/10.1002/zaac.19915980119

    Article  Google Scholar 

  18. Lin Y-C, Dumcenco DO, Huang Y-S, Suenaga K (2014) Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat Nano 9 (5):391–396. https://doi.org/10.1038/nnano.2014.64. http://www.nature.com/nnano/journal/v9/n5/abs/nnano.2014.64.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  19. Dresselhaus MS (1986) Intercalation in layered materials. Nato Sci Ser B 148. Springer, US. https://doi.org/10.1007/978-1-4757-5556-5

  20. Huang Z, Zhang W, Zhang W (2016) Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials 9(9):716

    Article  PubMed Central  Google Scholar 

  21. Zhuang HL, Hennig RG (2013) Computational search for single-layer transition-metal dichalcogenide photocatalysts. J Phys Chem C 117(40):20440–20445. https://doi.org/10.1021/jp405808a

    Article  CAS  Google Scholar 

  22. Ley L, Cardona M, Pollak RA (1979) Photoemission in semiconductors. In: Ley L, Cardona M (eds) Photoemission in solids II: case studies. Springer, Berlin, Heidelberg, pp 11–172. https://doi.org/10.1007/3-540-09202-1_2

    Google Scholar 

  23. Chevrel R, Sergent M, Prigent J (1971) Sur de nouvelles phases sulfurées ternaires du molybdène. J Solid State Chem 3(4):515–519. https://doi.org/10.1016/0022-4596(71)90095-8

    Article  CAS  Google Scholar 

  24. Chevrel R, Sergent M (1982) Chemistry and structure of ternary molybdenum chalcogenides. In: Fischer Ø, Maple MB (eds) Superconductivity in ternary compounds I, vol 32. Springer, Berlin Heidelberg, pp 25–86

    Chapter  Google Scholar 

  25. Fischer Ø, Maple MB (eds) (1982) Superconductivity in ternary compounds I, vol 32. Structural, electronic, and lattice properties. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-81868-4

  26. Nohl H, Klose W, Andersen OK (1982) Band Structures of MxMo6Xa - and M2Mo6X6-Cluster compounds. In: Fischer Ø, Maple MB (eds) Superconductivity in ternary compounds I, vol 32. Springer, Berlin Heidelberg, pp 165–222

    Chapter  Google Scholar 

  27. Hughbanks T, Hoffmann R (1983) Molybdenum chalcogenides: clusters, chains, and extended solids. The approach to bonding in three dimensions. J Am Chem Soc 105(5):1150–1162. https://doi.org/10.1021/ja00343a014

    Article  CAS  Google Scholar 

  28. Kganyago KR (2004) A theoretical study of alkali metal intercalated layered metal dichalcogenides and chevrel phase molybdenum chalcogenides. University of the North, Turfloop

    Google Scholar 

  29. Cai S-H, Liu C-W (1995) Theoretical investigation on the band structures of several Chevrel-phase compounds. J Chem Soc, Faraday Trans 91(3):479–483. https://doi.org/10.1039/FT9959100479

    Article  Google Scholar 

  30. Le Berre F, Peña O, Hamard C, Horyń R, Wojakowski A (1997) Superconducting and structural properties of rare-earth-based Chevrel-phase selenides REMo6Se8: first single crystal studies. J Alloys Compd 262–263:406–409. https://doi.org/10.1016/S0925-8388(97)00344-7

    Article  Google Scholar 

  31. Yvon K (1982) Structure and bonding of ternary superconductors. In: Fischer Ø, Maple MB (eds) Superconductivity in ternary compounds I, vol 32. Springer, Berlin Heidelberg, pp 87–112

    Chapter  Google Scholar 

  32. Nagao M, Kitaura H, Hayashi A, Tatsumisago M (2009) Characterization of all-solid-state lithium secondary batteries using CuxMo6S8−y electrode and Li2S–P2S5 solid electrolyte. J Power Sour 189(1):672–675. https://doi.org/10.1016/j.jpowsour.2008.09.025

    Article  CAS  Google Scholar 

  33. Wakihara M, Ikuta H, Uchida T (1993) Nickel Chevrel-phase sulfides NiyMo6S8−z and NiyMo6S8−zOn as the cathode of lithium secondary batteries. J Power Sour 44(1–3):651–655. https://doi.org/10.1016/0378-7753(93)80215-B

    Article  CAS  Google Scholar 

  34. Guohua L, Ikuta H, Uchida T, Wakihara M (1995) Re-examination of copper Chevrel-phase sulfides as cathode in lithium secondary batteries. J Power Sour 54(2):519–521. https://doi.org/10.1016/0378-7753(94)02139-T

    Article  CAS  Google Scholar 

  35. Wakihara M, Uchida T, Suzuki K, Taniguchi M (1989) A rechargeable lithium battery employing iron Chevrel phase compound (Fe1.25Mo6S7.8) as the cathode. Electrochim Acta 34(6):867–869. https://doi.org/10.1016/0013-4686(89)87121-X

    Article  CAS  Google Scholar 

  36. Suzuki K, Iijima T, Wakihara M (1998) Chromium Chevrel phase sulfide (CrxMo6S8−y) as the cathode with long cycle life in lithium rechargeable batteries. Solid State Ionics 109(3–4):311–320. https://doi.org/10.1016/S0167-2738(98)00074-5

    Article  CAS  Google Scholar 

  37. Kochubey DI, Rogov VA, Babenko VP (2009) Low-temperature synthesis of supported hydrodesulfurization catalysts based on chevrel phases. Kinet Catal 50(2):270–274. https://doi.org/10.1134/s0023158409020189

    Article  CAS  Google Scholar 

  38. Benson JW, Schrader GL, Angelici RJ (1995) Studies of the mechanism of thiophene hydrodesulfurization: 2H NMR and mass spectral analysis of 1,3-butadiene produced in the deuterodesulfurization (DDS) of thiophene over PbMo6S8 catalyst. J Mol Catal A: Chem 96(3):283–299. https://doi.org/10.1016/1381-1169(94)00025-5

    Article  CAS  Google Scholar 

  39. Harel-Michaud V, Pesnel-Leroux G, Burel L, Chevrel R, Geantet C, Cattenot M, Vrinat M (2001) Nickel Chevrel phase supported on porous alumina. J Alloys Compd 317–318:195–200. https://doi.org/10.1016/S0925-8388(00)01324-4

    Article  Google Scholar 

  40. Jaegermann W, Pettenkofer C, Alonso Vante N, Schwarzlose T, Tributsch H (1990) Chevrel phase type compounds: electronic, chemical and structural factors in oxygen reduction electrocatalysis. Ber Bunsenges Phys Chem 94(4):513–520. https://doi.org/10.1002/bbpc.19900940416

    Article  CAS  Google Scholar 

  41. Alonso-Vante N, Jaegermann W, Tributsch H, Hönle W, Yvon K (1987) Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters. J Am Chem Soc 109(11):3251–3257

    Article  Google Scholar 

  42. Tributsch H (1997) Challenges for (photo)electrocatalysis research. Catal Today 39(3):177–186. https://doi.org/10.1016/s0920-5861(97)00099-0

    Article  CAS  Google Scholar 

  43. Alonso-Vante N (1996) Electrocatalyse par l’intermédiaire des centres métalliques de composés de métaux de transition. Réduction de l’oxygène moléculaire. J Chim Phys Phys-Chim Biol 93(4):702–710

    Article  CAS  Google Scholar 

  44. Alonso-Vante N, Tributsch H (1986) Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 323(6087):431–432

    Article  Google Scholar 

  45. Alonso-Vante N, Schubert B, Tributsch H, Perrin A (1988) Influence of d-state density and chemistry of transition metal cluster selenides on electrocatalysis. J Catal 112(2):384–391

    Article  Google Scholar 

  46. Alonso-Vante N, Schubert B, Tributsch H (1989) Transition metal cluster materials for multi-electron transfer catalysis. Mater Chem Phys 22(3–4):281–307

    Article  CAS  Google Scholar 

  47. Kobayashi K, Fujimori A, Ohtani T, Dasgupta I, Jepsen O, Andersen OK (2001) Electronic structure of the Chevrel-phase compounds SnxMo6Se7.5: photoemission spectroscopy and band-structure calculations. Phys Rev B 63(19):195109

    Article  Google Scholar 

  48. Thole F, Wan LF, Prendergast D (2015) Re-examining the Chevrel phase Mo6S8 cathode for Mg intercalation from an electronic structure perspective. Phys Chem Chem Phys 17(35):22548–22551. https://doi.org/10.1039/C5CP03046C

    Article  CAS  PubMed  Google Scholar 

  49. Wan LF, Wright J, Perdue BR, Fister TT, Kim S, Apblett CA, Prendergast D (2016) Revealing electronic structure changes in Chevrel phase cathodes upon Mg insertion using X-ray absorption spectroscopy. Phys Chem Chem Phys 18(26):17326–17329. https://doi.org/10.1039/C6CP02412B

    Article  CAS  PubMed  Google Scholar 

  50. Peña O (2015) Chevrel phases: past, present and future. Physica C (Amsterdam, Neth) 514:95–112. https://doi.org/10.1016/j.physc.2015.02.019

    Article  CAS  Google Scholar 

  51. Chevrel R, Sergent M, Prigent J (1974) Un nouveau sulfure de molybdene: Mo3S4 preparation, proprietes et structure cristalline. Mater Res Bull 9(11):1487–1498. https://doi.org/10.1016/0025-5408(74)90095-6

    Article  CAS  Google Scholar 

  52. Sergent M, Chevrel R (1973) Sur de nouvelles phases séléniées ternaires du molybdène. J Solid State Chem 6(3):433–437. https://doi.org/10.1016/0022-4596(73)90235-1

    Article  CAS  Google Scholar 

  53. Fischer C, Gocke E, Stege U, Schöllhorn R (1993) Molybdenum cluster chalcogenides: in situ X-Ray studies on the formation of CuxMo6S8 via electron/ion transfer. J Solid State Chem 102(1):54–68. doi:http://dx.doi.org/10.1006/jssc.1993.1007

    Article  CAS  Google Scholar 

  54. Alonso-Vante N (1998) Inert for selective oxygen reduction of oxygen and method for the production thereof. Germany Patent WO1997DE02453 19971016; DE19961044628 19961017

    Google Scholar 

  55. Alonso-Vante N, Giersig M, Tributsch H (1991) Thin layer semiconducting cluster electrocatalysts for oxygen reduction. J Electrochem Soc 138(2):639–640

    Article  CAS  Google Scholar 

  56. Alonso-Vante N, Tributsch H (1994) Electrode materials and strategies for (Photo)electrochemistry. In: Lipkowski J, Ross P (eds) Electrochemistry of novel materials, vol III. VCH, New York, pp 1–63

    Google Scholar 

  57. Alonso-Vante N (2006) Carbonyl tailored electrocatalysts. Fuel Cells 6(3–4):182–189

    Article  CAS  Google Scholar 

  58. Vogel W, Kaghazchi P, Jacob T, Alonso-Vante N (2007) Genesis of RuxSey nanoparticles by pyrolysis of Ru4Se2(CO)11: a combined X-ray in Situ and DFT study. J Phys Chem C 111:3908–3913

    Article  CAS  Google Scholar 

  59. Vogel W, Le Rhun V, Garnier E, Alonso-Vante N (2001) Ru clusters synthesized chemically from dissolved carbonyl. in situ study of a novel electrocatalyst in the gas phase and in electrochemical environment. J Phys Chem B 105(22):5238–5243

    Article  CAS  Google Scholar 

  60. Longoni G, Chini P (1976) Synthesis and chemical characterization of platinum carbonyl dianions [Pt3(CO)6]n2- (n =  - 10, 6, 5, 4, 3, 2, 1). a new series of inorganic oligomers. J Am Chem Soc 98(23):7225–7231

    Article  CAS  Google Scholar 

  61. Adams RD, Chen G, Wu W (1993) The synthesis and structural analysis of Pt2Ru4(CO)18 and the products obtained from its reactions with 1, 2-bis(diphenylphosphino)ethane. J Cluster Sci 4(2):119–132

    Article  CAS  Google Scholar 

  62. Nashner MS, Somerville DM, Lane PD, Adler DL, Shapley JR, Nuzzo RG (1996) Bimetallic catalyst particle nanostructure. evolution from molecular cluster precursors. J Am Chem Soc 118(51):12964–12974

    Article  CAS  Google Scholar 

  63. Nashner MS, Frenkel AI, Adler DL, Shapley JR, Nuzzo RG (1997) Structural characterization of carbon-supported platinum–ruthenium nanoparticles from the molecular cluster precursor PtRu5C(CO)16. J Am Chem Soc 119(33):7760–7771

    Article  CAS  Google Scholar 

  64. Hills CW, Nashner MS, Frenkel AI, Shapley JR, Nuzzo RG (1999) Carbon support effects on bimetallic Pt–Ru nanoparticles formed from molecular precursors. Langmuir 15(3):690–700

    Article  CAS  Google Scholar 

  65. Le Rhun V (2001) Réduction électrocatalytique de l’oxygène moléculaire sur des électrodes à amas métaalliques en présence de méthanol. University of Poiters, Poitiers, PhD

    Google Scholar 

  66. Le Rhun V, Alonso-Vante N (2000) Tailoring of nanodivided electrocatalyst materials based on transition metal. J New Mater Electrochem Syst 3(4):331–336

    CAS  Google Scholar 

  67. Layer TM, Lewis J, Martin A, Raithby PR, Wong WT (1992) The chemistry of the selenium-containing cluster [Ru4-(µ4-Se)2(CO)8(µ-CO)3]: crystal structures of [Ru33-Se)2(CO)7(Ph2PC2PPh2)], [Ru44-Se)2(CO)10(SbPh3)] and [Ru33-Se)2(CO)9]. J Chem Soc, Dalton Trans 24:3411–3417. https://doi.org/10.1039/DT9920003411

    Article  Google Scholar 

  68. Johnson BFG, Layer TM, Lewis J, Martin A, Raithby PR (1992) Synthesis and characterisation of novel selenium-containing clusters; crystal structures of [Ru44-Se)2(CO)8(μ-CO)3] and [Ru33-Se)2(CO)7(Ph2P(CH2)3PPh2)]. J Organomet Chem 429(3):C41–C45

    Article  CAS  Google Scholar 

  69. Layer TM, Lewis J, Martin A, Raithby PR, Wong WT (1993) Synthesis of novel selenium-containing osmium carbonyl clusters: X-ray structures of [Os5(μ-H) (CO)153-SePh)] and [Os6(μ-H)(CO)18(μ-SeH)]. J Organomet Chem 444(1–2)

    Google Scholar 

  70. Ramírez-Raya SD, Solorza-Feria O, Ordoñez-Regil E, Benaissa M, Valverde SMF (1998) Synthesis and characterization of W0.12Ru2.1Se and W0.013Ru1.27Se electrocatalysts. Nanostruct Mater 10(8):1337–1346

    Article  Google Scholar 

  71. Solorza-Feria O, Ramı́rez-Raya S, Rivera-Noriega R, Ordoñez-Regil E, Fernández-Valverde SM (1997) Kinetic studies of molecular oxygen reduction on W0.013Ru1.27Se thin films chemically synthesized. Thin Solid Films 311(1–2):164–170. doi:http://dx.doi.org/10.1016/S0040-6090(97)00685-8

    Article  CAS  Google Scholar 

  72. Suarez-Alcantara K, Rodriguez-Castellanos A, Duron-Torres S, Solorza-Feria O (2007) RuxCrySez electrocatalyst loading and stability effects on the electrochemical performance in a PEMFC. J Power Sour 171(2):381–387

    Article  CAS  Google Scholar 

  73. Rodriguez FJ, Sebastian PJ, Solorza O, Perez R (1998) Mo-Ru-W chalcogenide electrodes prepared by chemical synthesis and screen printing for fuel cell applications. Int J Hydrogen Energy 23(11):1031–1035

    Article  CAS  Google Scholar 

  74. Castellanos RH, Campero A, Solorza-Feria O (1998) Synthesis of W-Se-Os carbonyl electrocatalyst for oxygen reduction in 0.5 M H2SO4. Int J Hydrogen Energy 23(11):1037–1040

    Article  CAS  Google Scholar 

  75. Kolary-Zurowska A, Zieleniak A, Miecznikowski K, Baranowska B, Lewera A, Fiechter S, Bogdanoff P, Dorbandt I, Marassi R, Kulesza PJ (2007) Activation of methanol-tolerant carbon-supported RuSex electrocatalytic nanoparticles towards more efficient oxygen reduction. J Solid State Electrochem 11(7):915–921

    Article  CAS  Google Scholar 

  76. Kulesza PJ, Miecznikowski K, Baranowska B, Skunik M, Kolary-Zurowska A, Lewera A, Karnicka K, Chojak M, Rutkowska I, Fiechter S, Bogdanoff P, Dorbandt I, Zehl G, Hiesgen R, Dirk E, Nagabhushana KS, Boennemann H (2007) Electroreduction of oxygen at tungsten oxide modified carbon-supported RuSex nanoparticles. J Appl Electrochem 37(12):1439–1446

    Article  CAS  Google Scholar 

  77. Bron M, Bogdanoff P, Fiechter S, Dorbandt I, Hilgendorff M, Schulenburg H, Tributsch H (2001) Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction. J Electroanal Chem 500(1–2):510–517

    Article  CAS  Google Scholar 

  78. Bron M, Bogdanoff P, Fiechter S, Hilgendorff M, Radnik J, Dorbandt I, Schulenburg H, Tributsch H (2001) Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3(CO)12. J Electroanal Chem 517(1–2):85–94

    Article  CAS  Google Scholar 

  79. Fiechter S, Dorbandt I, Bogdanoff P, Zehl G, Schulenburg H, Tributsch H, Bron M, Radnik J, Fieber-Erdmann M (2007) Surface modified ruthenium nanoparticles: structural investigation and surface analysis of a novel catalyst for oxygen reduction. J Phys Chem C 111(1):477–487

    Article  CAS  Google Scholar 

  80. Zehl G, Schmithals G, Hoell A, Haas S, Hartnig C, Dorbandt I, Bogdanoff P, Fiechter S (2007) On the structure of carbon-supported selenium-modified ruthenium nanoparticles as electrocatalysts for oxygen reduction in fuel cells. Angew Chem Int Ed 46(38):7311–7314

    Article  CAS  Google Scholar 

  81. Zehl G, Bogdanoff P, Dorbandt I, Fiechter S, Wippermann K, Hartnig C (2007) Carbon supported Ru-Se as methanol tolerant catalysts for DMFC cathodes. part I: preparation and characterization of catalysts. J Appl Electrochem 37(12):1475–1484

    Article  CAS  Google Scholar 

  82. Zaikovskii VI, Nagabhushana KS, Kriventsov VV, Loponov KN, Cherepanova SV, Kvon RI, Bonnemann H, Kochubey DI, Savinova ER (2006) Synthesis and structural characterization of Se-modified carbon-supported Ru nanoparticles for the oxygen reduction reaction. J Phys Chem B 110(13):6881–6890

    Article  CAS  PubMed  Google Scholar 

  83. Ma J, Canaff C, Alonso-Vante N (2013) The effect of tuning and origin of tolerance to organics of platinum catalytic centers modified by selenium. Physica Status Solidi (a) 211(9):2030–2034. https://doi.org/10.1002/pssa.201330148

    Article  Google Scholar 

  84. Fiechter S, Kühne HM (1987) Crystal growth of RuX2 (X = S, Se, Te) by chemical vapour transport and high temperature solution growth. J Cryst Growth 83(4):517–522. https://doi.org/10.1016/0022-0248(87)90246-6

    Article  CAS  Google Scholar 

  85. Sheu J-S, Shih Y-S, Lin S-S, Huang Y-S (1991) Growth and characterization of RuSe2 single crystals. Mater Res Bull 26(1):11–17. https://doi.org/10.1016/0025-5408(91)90033-I

    Article  CAS  Google Scholar 

  86. Dassenoy F, Vogel W, Alonso-Vante N (2002) Structural studies and stability of cluster-like RuxSey electrocatalysts. J Phys Chem B 106(47):12152–12157

    Article  CAS  Google Scholar 

  87. Babu PK, Lewera A, Jong HC, Hunger R, Jaegermann W, Alonso-Vante N, Wieckowski A, Oldfield E (2007) Selenium becomes metallic in Ru-Se fuel cell catalysts: An EC-NMR and XPS investigation. J Am Chem Soc 129(49):15140–15141

    Article  CAS  PubMed  Google Scholar 

  88. Gochi-Ponce Y, Alonso-Nunez G, Alonso-Vante N (2006) Synthesis and electrochemical characterization of a novel platinum chalcogenide electrocatalyst with an enhanced tolerance to methanol in the oxygen reduction reaction. Electrochem Commun 8(9):1487–1491

    Article  CAS  Google Scholar 

  89. Gago AS, Gochi-Ponce Y, Feng Y-J, Esquivel JP, Sabaté N, Santander J, Alonso-Vante N (2012) Tolerant chalcogenide cathodes of membraneless micro fuel cells. Chemsuschem 5(8):1488–1494. https://doi.org/10.1002/cssc.201200009

    Article  CAS  PubMed  Google Scholar 

  90. Ziegelbauer JM, Gatewood D, Gullá AF, Guinel MJF, Ernst F, Ramaker DE, Mukerjee S (2009) Fundamental investigation of oxygen reduction reaction on rhodium sulfide-based chalcogenides. J Phys Chem C 113(17):6955–6968

    Article  CAS  Google Scholar 

  91. Papageorgopoulos DC, Liu F, Conrad O (2007) Reprint of “a study of RhxSy/C and RuSex/C as methanol-tolerant oxygen reduction catalysts for mixed-reactant fuel cell applications”. Electrochim Acta 53(2):1037–1041

    Article  CAS  Google Scholar 

  92. Lee K, Zhang L, Zhang JJ (2007) A novel methanol-tolerant Ir-Se chalcogenide electrocatalyst for oxygen reduction. J Power Sour 165(1):108–113

    Article  CAS  Google Scholar 

  93. Ohtani T, Ikeda K, Hayashi Y, Fukui Y (2007) Mechanochemical preparation of palladium chalcogenides. Mater Res Bull 42(11):1930–1934. https://doi.org/10.1016/j.materresbull.2006.12.012

    Article  CAS  Google Scholar 

  94. Adam JL, Zhang XH (eds) (2014) Chalcogenide glasses. Preparation, properties and applications, 1st edn. Woodhead Publishing. doi:http://dx.doi.org/10.1016/B978-0-85709-345-5.50023-4

  95. Frumar M, Frumarova B, Wagner T (2011) 4.07—amorphous and glassy semiconducting chalcogenides A2—Bhattacharya, Pallab. In: Fornari R, Kamimura H (eds) Comprehensive semiconductor science and technology. Elsevier, Amsterdam, pp 206–261. doi:http://dx.doi.org/10.1016/B978-0-44-453153-7.00122-X

    Chapter  Google Scholar 

  96. Frumar M, Wagner T (2003) Ag doped chalcogenide glasses and their applications. Curr Opin Solid State Mater Sci 7(2):117–126. https://doi.org/10.1016/S1359-0286(03)00044-5

    Article  CAS  Google Scholar 

  97. Pradel A, Ribes M (2014) 7—Ionic conductivity of chalcogenide glasses. In: Chalcogenide glasses. Woodhead Publishing, pp 169–208. doi:http://dx.doi.org/10.1533/9780857093561.1.169

    Chapter  Google Scholar 

  98. Tatsumisago M, Hayashi A (2014) 19 - Chalcogenide glasses as electrolytes for batteries. In: Chalcogenide glasses. Woodhead Publishing, pp 632–654. doi:http://dx.doi.org/10.1533/9780857093561.2.632

    Chapter  Google Scholar 

  99. Stanić V, Pierre AC, Etsell TH, Mikula RJ (2000) Influence of reaction parameters on the microstructure of the germanium disulfide gel. J Am Ceram Soc 83(7):1790–1796. https://doi.org/10.1111/j.1151-2916.2000.tb01465.x

    Article  Google Scholar 

  100. Gacoin T, Lahlil K, Larregaray P, Boilot JP (2001) Transformation of CdS colloids: sols, gels, and precipitates. J Phys Chem B 105(42):10228–10235. https://doi.org/10.1021/jp011738l

    Article  CAS  Google Scholar 

  101. Bag S, Trikalitis PN, Chupas PJ, Armatas GS, Kanatzidis MG (2007) Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317(5837):490–493. https://doi.org/10.1126/science.1142535

    Article  CAS  PubMed  Google Scholar 

  102. Polychronopoulou K, Malliakas CD, He J, Kanatzidis MG (2012) Selective surfaces: quaternary Co(Ni)MoS-based chalcogels with divalent (Pb2+, Cd2+, Pd2+) and trivalent (Cr3+, Bi3+) metals for gas separation. Chem Mater 24(17):3380–3392. https://doi.org/10.1021/cm301444p

    Article  CAS  Google Scholar 

  103. Brock SL, Arachchige IU, Kalebaila KK (2006) Metal chalcogenide gels, xerogels and aerogels. Comments Inorg Chem 27(5–6):103–126. https://doi.org/10.1080/02603590601084434

    Article  CAS  Google Scholar 

  104. Mohanan JL, Arachchige IU, Brock SL (2005) Porous semiconductor chalcogenide aerogels. Science 307(5708):397

    CAS  PubMed  Google Scholar 

  105. Arachchige IU, Brock SL (2007) Sol-Gel methods for the assembly of metal chalcogenide quantum dots. Acc Chem Res 40(9):801–809. https://doi.org/10.1021/ar600028s

    Article  CAS  PubMed  Google Scholar 

  106. Bag S, Arachchige IU, Kanatzidis MG (2008) Aerogels from metal chalcogenides and their emerging unique properties. J Mater Chem 18(31):3628–3632. https://doi.org/10.1039/B804011G

    Article  CAS  Google Scholar 

  107. Staszak-Jirkovsky J, Malliakas CD, Lopes PP, Danilovic N, Kota SS, Chang K-C, Genorio B, Strmcnik D, Stamenkovic VR, Kanatzidis MG, Markovic NM (2016) Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat Mater 15(2):197–203. https://doi.org/10.1038/nmat4481 http://www.nature.com/nmat/journal/v15/n2/abs/nmat4481.html#supplementary-information

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Alonso-Vante .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alonso-Vante, N. (2018). Introduction. In: Chalcogenide Materials for Energy Conversion. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-89612-0_1

Download citation

Publish with us

Policies and ethics