Skip to main content

Safety and Efficiency Testing

  • Chapter
  • First Online:
  • 499 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

Abstract

The biocompatibility/cytotoxicity of materials intended for biomedical applications are always of utter importance (Danoux et al. in Acta Mater 17:1–15, 2015 [1], Yan et al. in Acta Biomater 12:227–241, 2015 [2]) Although the main objective of such testing is mostly related to assessment of the respective material safety and efficiency, functional testing of materials in relation to their targeted use is also needed to be considered. The main objective of the approach towards such testing is, therefore, not only related to the assessment of the specific materials’ biocompatibility with desired cells, but also the execution of the test as similar to the physiological application as possible (Naranda et al. in Sci Rep 6:28695, 2016 [3], Finšgar et al. in Sci Rep 6:26653, 2016 [4]). Related to this, the effect of possibly released toxic degradation products that could hinder cell growth can be determined, as well as possible local overdoses of respective drugs, which are often part of tested formulations, could be assessed, since these could also potentially harm the growing cells (Finšgar et al. in Sci Rep 6:26653, 2016[4]). Another related testing approach is to determine the respective formulation influence on the cell growth in comparison with different control samples (Naranda et al. in Sci Rep 6:28695, 2016 [3], Gradisnik et al. in Global Spine J 6:WST014, 2016 [5], Velnar et al. in Global Spine J 6:WST019, 2016 [6]). The following chapter will, therefore, be composed of two main parts. The first will review briefly some of the most used testing approaches in general (mostly according to the related ISO Standard—ISO 10993), while the second part will review and describe some of possible modifications of such standard approaches to get the best possible overview of the respective materials’ safety and efficiency for a specific purpose.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Danoux CBSS, Bassett DC, Othman Z, Rodrigues AI, Reis RL, Barralet JE, et al. Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials. Acta Mater. 2015;17:1–15.

    CAS  Google Scholar 

  2. Yan L-P, Silva-Correia J, Oliveira MB, Vilela C, Pereira H, Sousa RA, et al. Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater. 2015;12:227–41.

    Article  CAS  Google Scholar 

  3. Naranda J, Susec M, Maver U, Gradisnik L, Gorenjak M, Vukasovic A, et al. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Sci Rep. 2016;6:28695.

    Article  CAS  Google Scholar 

  4. Finšgar M, Uzunalić AP, Stergar J, Gradišnik L, Maver U. Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications. Sci Rep. 2016;6:26653.

    Article  Google Scholar 

  5. Gradisnik L, Maver U, Bunc G, Velnar T. The effect of iodixanol on human intervertebral disc cells in vitro. Global Spine J. 2016;06(S 01):WST014.

    Google Scholar 

  6. Velnar T, Bunc G, Maver U, Gradisnik L. The intervertebral disc functional cell models: a new revolution for in vitro toxicology testing. Global Spine J. 2016;06(S 01):WST019.

    Google Scholar 

  7. International Organization for S. Biological evaluation of medical devices. Évaluation biologique des dispositifs médicaux. Partie 5, Essais concernant la cytotoxicité in vitro. Part 5. Genève, Switzerland: International Organization for Standardization; 1999.

    Google Scholar 

  8. Johnson HJ, Northup SJ, Seagraves PA, Atallah M, Garvin PJ, Lin L, et al. Biocompatibility test procedures for materials evaluation in vitro. II. Objective methods of toxicity assessment. J Biomed Mater Res. 1985;19(5):489–508.

    Article  CAS  Google Scholar 

  9. Li W, Zhou J, Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep. 2015;3(5):617–20.

    Article  CAS  Google Scholar 

  10. Cao T, Saw TY, Heng BC, Liu H, Yap AUJ, Ng ML. Comparison of different test models for the assessment of cytotoxicity of composite resins. J Appl Toxicol. 2005;25(2):101–8.

    Article  CAS  Google Scholar 

  11. Hanks CT, Wataha JC, Sun Z. In vitro models of biocompatibility: a review. Dent Mater. 1996;12(3):186–93.

    Article  CAS  Google Scholar 

  12. Pizzoferrato A, Ciapetti G, Stea S, Cenni E, Arciola CR, Granchi D, et al. Cell culture methods for testing biocompatibility. Clin Mater. 1994;15(3):173–90.

    Article  CAS  Google Scholar 

  13. Vanden Berghe T, Grootjans S, Goossens V, Dondelinger Y, Krysko DV, Takahashi N, et al. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods. 2013;61(2):117–29.

    Article  CAS  Google Scholar 

  14. Hartley JM, Spanswick VJ, Hartley JA. Measurement of DNA damage in individual cells using the single cell gel electrophoresis (Comet) assay. Methods Mol Biol. 2011;731:309–20.

    Article  CAS  Google Scholar 

  15. Jonas E, Dwenger A, Lueken B, Boehme U. Simultaneous measurement of endothelial cell damage, elastase release and chemiluminescence response during interaction between polymorphonuclear leukocytes and endothelial cells. J Biolumin Chemilumin. 1991;6(1):19–27.

    Article  CAS  Google Scholar 

  16. Son S, Tzur A, Weng Y, Jorgensen P, Kim J, Kirschner MW, et al. Direct observation of mammalian cell growth and size regulation. Nat Methods. 2012;9(9):910–2.

    Article  CAS  Google Scholar 

  17. Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED. Metabolic network structure determines key aspects of functionality and regulation. Nature. 2002;420(6912):190–3.

    Article  CAS  Google Scholar 

  18. Wang K, Shindoh H, Inoue T, Horii I. Advantages of in vitro cytotoxicity testing by using primary rat hepatocytes in comparison with established cell lines. J Toxicol Sci. 2002;27(3):229–37.

    Article  CAS  Google Scholar 

  19. Farwell DG, Shera KA, Koop JI, Bonnet GA, Matthews CP, Reuther GW, et al. Genetic and epigenetic changes in human epithelial cells immortalized by telomerase. Am J Pathol. 2000;156(5):1537–47.

    Article  CAS  Google Scholar 

  20. Gradisnik L, Trapecar M, Rupnik MS, Velnar T. HUIEC, Human intestinal epithelial cell line with differentiated properties: process of isolation and characterisation. Wien Klin Wochenschr. 2015;127(Suppl 5):S204–9.

    Article  Google Scholar 

  21. Uklejewski R, Rogala P, Winiecki M, Kedzia A, Ruszkowski P. Preliminary results of implantation in animal model and osteoblast culture evaluation of prototypes of biomimetic multispiked connecting scaffold for noncemented stemless resurfacing hip arthroplasty endoprostheses. BioMed Res Int. 2013.

    Google Scholar 

  22. Santillan G, Morelli S, Katz S, Mondelo N, Boland R, Puche R, et al. Action of the novel bisphosphonate lidadronate in animal models and osteoblast-like cells. Bone. 2004;34:S69–70.

    Google Scholar 

  23. Ma R, Tang S, Tan H, Lin W, Wang Y, Wei J, et al. Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material. Int J Nanomed. 2014;9:3949–61.

    Google Scholar 

  24. Gyorgyey A, Ungvari K, Kecskemeti G, Kopniczky J, Hopp B, Oszko A, et al. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mater Sci Eng C, Mater Biol Appl. 2013;33(7):4251–9.

    Article  CAS  Google Scholar 

  25. Czekanska EM, Stoddart MJ, Ralphs JR, Richards RG, Hayes JS. A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J Biomed Mater Res, Part A. 2014;102(8):2636–43.

    Article  CAS  Google Scholar 

  26. Narandaa J, Gradišnik L, Gorenjak M, Vogrin M, Maver U. Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA). PeerJ. 2017 (In press).

    Google Scholar 

  27. Dreifke MB, Jayasuriya AA, Jayasuriya AC. Current wound healing procedures and potential care. Mater Sci Eng, C. 2015;48:651–62.

    Article  CAS  Google Scholar 

  28. Maver T, Gradišnik L, Kurečič M, Hribernik S, Smrke DM, Maver U, et al. Layering of different materials to achieve optimal conditions for treatment of painful wounds. Int J Pharm. 2017;529(1–2):576–88.

    Article  CAS  Google Scholar 

  29. Stergar J, Ban I, Gradišnik L, Bele M, Mohan T, Maver U. Advanced biocompatible composite thin films with potential application in wound care and skin cancer treatment. Chem Mater. 2017 (In press).

    Google Scholar 

  30. Cory G. Scratch-wound assay. Methods Mol Biol. 2011;769:25–30.

    Article  CAS  Google Scholar 

  31. Kim TY, Jang IH, Han DY, Lee WG. Quantitative image analysis of the shape and size of circular wound sites generated by vertically stamped scratches. Micron. 2017.

    Google Scholar 

  32. Planz V, Wang J, Windbergs M. Establishment of a cell-based wound healing assay for bio-relevant testing of wound therapeutics. J Pharmacol Toxicol Methods. 2017.

    Google Scholar 

  33. Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K. Functional wound dressing materials with highly tunable drug release properties. RSC Adv. 2015;5(95):77873–84.

    Article  CAS  Google Scholar 

  34. Banche G, Prato M, Magnetto C, Allizond V, Giribaldi G, Argenziano M, et al. Antimicrobial chitosan nanodroplets: new insights for ultrasound-mediated adjuvant treatment of skin infection. Future Microbiol. 2015;10:929–39.

    Article  CAS  Google Scholar 

  35. Park SC, Nam JP, Kim JH, Kim YM, Nah JW, Jang MK. Antimicrobial action of water-soluble beta-chitosan against clinical multi-drug resistant bacteria. Int J Mol Sci. 2015;16(4):7995–8007.

    Article  CAS  Google Scholar 

  36. Silva JM, Duarte ARC, Custódio CA, Sher P, Neto AI, Pinho ACM, et al. Nanostructured hollow tubes based on chitosan and alginate multilayers. Adv Healthc Mater. 2014;3(3):433–40.

    Article  CAS  Google Scholar 

  37. Gašparič P, Kurečič M, Maver U, Gradišnik L, Hribernik S, Kleinschek KS, et al. Novel polysaccharide/hydroxyapatite nanofibrous composite for bone tissue engineering. Carbohydr Polym. 2017 (In press).

    Google Scholar 

  38. Weinberg GL. Treatment of local anesthetic systemic toxicity (LAST). Reg Anesth Pain Med. 2010;35(2):188–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Maver .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maver, T., Maver, U., Pivec, T., Kurečič, M., Persin, Z., Stana Kleinschek, K. (2018). Safety and Efficiency Testing. In: Bioactive Polysaccharide Materials for Modern Wound Healing. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-89608-3_7

Download citation

Publish with us

Policies and ethics