Skip to main content

Other Solutions to Achieve Desired Wound Healing Characteristics

  • Chapter
  • First Online:
Bioactive Polysaccharide Materials for Modern Wound Healing

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

  • 516 Accesses

Abstract

The variety of wound types has resulted in a wide range of wound care approaches, which are fast developing due to numerous researches. The integration of technological advances with understanding of the complex cellular and biochemical mechanisms of wound healing has led to the development of various advanced wound healing modalities, such as bioengineered skin and tissue equivalents, Negative Pressure Wound Therapy (NPWT), use of plasma, photochemical tissue bonding, electroactive material and hyperbaric oxygen therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halstead FD, Rauf M, Bamford A, Wearn CM, Bishop JRB, Burt R, et al. Antimicrobial dressings: comparison of the ability of a panel of dressings to prevent biofilm formation by key burn wound pathogens. Burns. 2015;41(8):1683–94.

    Article  Google Scholar 

  2. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403–34.

    Article  Google Scholar 

  3. Guggenheim M, Thurnheer T, Gmur R, Giovanoli P, Guggenheim B. Validation of the Zurich burn-biofilm model. Burns. 2011;37(7):1125–33.

    Article  Google Scholar 

  4. Widgerow AD. Chronic wound fluid–thinking outside the box. Wound Repair Regeneration. 2011;19(3):287–91.

    Article  Google Scholar 

  5. Parikh DV, Fink T, DeLucca AJ, Parikh AD. Absorption and swelling characteristics of silver (I) antimicrobial wound dressings. Text Res J. 2011;81(5):494–503.

    Article  CAS  Google Scholar 

  6. Petrulyte S. Advanced textile materials and biopolymers in wound management. Dan Med Bull. 2008;55(1):72–7.

    CAS  Google Scholar 

  7. Leaper DJ. Silver dressings: their role in wound management. Int Wound J. 2006;3(4):282–94.

    Article  Google Scholar 

  8. Barillo DJ. Silver in wound care: a review of the state-of-the-art. Burns. 2014;40(Suppl 1):S1–2.

    Article  Google Scholar 

  9. Fong J, Wood F. Nanocrystalline silver dressings in wound management: a review. Int J Nanomed. 2006;1(4):441–9.

    Article  CAS  Google Scholar 

  10. Silver S, Phung LT, Silver G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol. 2006;33(7):627–34.

    Article  CAS  Google Scholar 

  11. Lina W, et al. Investigation of the cytotoxicity mechanism of silver nanoparticles in vitro. Biomed Mater. 2010;5(4):044103.

    Article  Google Scholar 

  12. Kim Y-J, Yang S, Ryu J-C. Cytotoxicity and genotoxicity of nano-silver in mammalian cell lines. Mol Cell Toxicol. 2010;6(2):119–25.

    Article  CAS  Google Scholar 

  13. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2008;3(2):279–90.

    Article  Google Scholar 

  14. Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, et al. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair ad Regeneration. 2007;15(1):94–104.

    Article  Google Scholar 

  15. Liu J, Sonshine DA, Shervani S, Hurt RH. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010;4(11):6903–13.

    Article  CAS  Google Scholar 

  16. Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine. 2010;6(4):570–4.

    Article  CAS  Google Scholar 

  17. Eid KA, Azzazy HM. Controlled synthesis and characterization of hollow flower-like silver nanostructures. Int J Nanomed. 2012;7:1543–50.

    CAS  Google Scholar 

  18. Seetharaman S, Natesan S, Stowers RS, Mullens C, Baer DG, Suggs LJ, et al. A PEGylated fibrin-based wound dressing with antimicrobial and angiogenic activity. Acta Biomater. 2011;7(7):2787–96.

    Article  CAS  Google Scholar 

  19. Pivec T, Peršin Z, Kolar M, Maver T, Dobaj A, Vesel A, et al. Modification of cellulose non-woven substrates for preparation of modern wound dressings. Text Res J. 2013;84(1):96–112.

    Article  Google Scholar 

  20. Pivec T, Persin Z, Maver T, Kolar M, Stana-Kleinschek K, Hribernik S. Binding silver nano-particles onto viscose non-woven using different commercial sol-gel procedures. Mater Technol. 2012;46(1):75–80.

    CAS  Google Scholar 

  21. Peršin Z, Maver U, Pivec T, Maver T, Vesel A, Mozetič M, et al. Novel cellulose based materials for safe and efficient wound treatment. Carbohyd Polym. 2014;100:55–64.

    Article  Google Scholar 

  22. Wilkinson LJ, White RJ, Chipman JK. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care. 2011;20(11):543–9.

    Article  CAS  Google Scholar 

  23. Lansdown AB. A review of the use of silver in wound care: facts and fallacies. Br J Nurs. 2004;13(6 Suppl):S6–19.

    Article  Google Scholar 

  24. Pivec T, Peršin Z, Kolar M, Maver T, Dobaj A, Vesel A, et al. Modification of cellulose non-woven substrates for preparation of modern wound dressings. Text Res J. 2014;84(1):96–112.

    Article  Google Scholar 

  25. Mahltig B, Audenaert F, Böttcher H. Hydrophobic silica sol coatings on textiles—the influence of solvent and sol concentration. J Sol-Gel Sci Technol. 2005;34(2):103–9.

    Article  CAS  Google Scholar 

  26. Veronovski N, Hribernik S, Smole MS. Funkcionalizacija tekstilij z nano TiO2 in SiO2 prevlekami. Tekstilec. 2008;51.

    Google Scholar 

  27. Gutiérrez-Wing C, Pérez-Hernández R, Mondragón-Galicia G, Villa-Sánchez G, Fernández-García ME, Arenas-Alatorre J, et al. Synthesis of silica–silver wires by a sol–gel technique. Solid State Sci. 2009;11(9):1722–9.

    Article  Google Scholar 

  28. Pivec T, Hribernik S. Protibakterijska preja, izdelana iz Ag-oplaščenih modalnih vlaken: rezultat mednarodnega projekta FP7 SurFunCell. Tekstilec. 2013;56(2).

    Google Scholar 

  29. Pivec T, Hribernik S, Ribitsch V, Stana-Kleinschek K,. Fzs PL, et al. Antimicrobial cellulose material and process of its production: European Patent Application No. EP13151727.8, 17. January 2013 (reference P003373EP), Submission Number 1966536: Europäisches Patentamt; 2013.

    Google Scholar 

  30. Pivec T, Hribernik S, Kolar M, Kleinschek KS. Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles. Carbohyd Polym. 2017;163:92–100.

    Article  CAS  Google Scholar 

  31. Vosmanská V, Kolářová K, Rimpelová S, Kolská Z, Švorčík V. Antibacterial wound dressing: plasma treatment effect on chitosan impregnation and in situ synthesis of silver chloride on cellulose surface. RSC Adv. 2015;5(23):17690–9.

    Article  Google Scholar 

  32. Kramar A, Prysiazhnyi V, Dojčinović B, Mihajlovski K, Obradović B, Kuraica M, et al. Antimicrobial viscose fabric prepared by treatment in DBD and subsequent deposition of silver and copper ions—Investigation of plasma aging effect. Surf Coat Technol. 2013;234:92–9.

    Article  CAS  Google Scholar 

  33. Taheri S, Cavallaro A, Christo SN, Smith LE, Majewski P, Barton M, et al. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials. 2014;35(16):4601–9.

    Article  CAS  Google Scholar 

  34. Spange S, Pfuch A, Wiegand C, Beier O, Hipler UC, Grünler B. Atmospheric pressure plasma CVD as a tool to functionalise wound dressings. J Mater Sci—Mater Med. 2015;26(2):1–9.

    Article  CAS  Google Scholar 

  35. Beyer D, Knoll W, Ringsdorf H, Wang JH, Timmons RB, Sluka P. Reduced protein adsorption on plastics via direct plasma deposition of triethylene glycol monoallyl ether. J Biomed Mater Res. 1997;36(2):181–9.

    Article  CAS  Google Scholar 

  36. Seifert B, Romaniuk P, Groth T. Covalent immobilization of hirudin improves the haemocompatibility of polylactide—polyglycolide in vitro. Biomaterials. 1997;18(22):1495–502.

    Article  CAS  Google Scholar 

  37. Bathina MN, Mickelsen S, Brooks C, Jaramillo J, Hepton T, Kusumoto FM. Safety and efficacy of hydrogen peroxide plasma sterilization for repeated use of electrophysiology catheters. J Am Coll Cardiol. 1998;32(5):1384–8.

    Article  CAS  Google Scholar 

  38. Amstein CF, Hartman PA. Adaptation of plastic surfaces for tissue culture by glow discharge. J Clin Microbiol. 1975;2(1):46–54.

    CAS  Google Scholar 

  39. Silva SS, Luna SM, Gomes ME, Benesch J, Pashkuleva I, Mano JF, et al. Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol Biosci. 2008;8(6):568–76.

    Article  CAS  Google Scholar 

  40. Lerouge S, Fozza A, Wertheimer M, Marchand R, Yahia LH. Sterilization by low-pressure plasma: the role of vacuum-ultraviolet radiation. Plasmas Polym. 2000;5(1):31–46.

    Article  CAS  Google Scholar 

  41. Steinschaden A, Adamovic D, Jobst G, Glatz R, Urban G. Miniaturised thin film conductometric biosensors with high dynamic range and high sensitivity. Sens Actuators, B. 1997;44(1):365–9.

    Article  CAS  Google Scholar 

  42. Zemljič L, Peršin Z, Stenius P, Kleinschek K. Carboxyl groups in pre-treated regenerated cellulose fibres. Cellulose. 2008;15:315.

    Article  Google Scholar 

  43. Vesel A. XPS study of surface modification of different polymer materials by oxygen plasma treatment. Informacije Midem-J Microelectron Electron Compon Mater. 2008;38(4):257–65.

    Google Scholar 

  44. Peršin Z, Stenius P, Stana-Kleinschek K. Estimation of the surface energy of chemically and oxygen plasma-treated regenerated cellulosic fabrics using various calculation models. Text Res J. 2011:0040517511410110.

    Google Scholar 

  45. Kleinschek KS, Peršin Z, Maver T. Modification of non-woven cellulose for medical applications using non-equilibrium gassious plasma. Mater Technol. 2011;45(3):253–7.

    Google Scholar 

  46. Peršin Z, Devetak M, Drevenšek-Olenik I, Vesel A, Mozetič M, Stana-Kleinschek K. The study of plasma’s modification effects in viscose used as an absorbent for wound-relevant fluids. Carbohyd Polym. 2013;97(1):143–51.

    Article  Google Scholar 

  47. Persin Z, Mozetic M, Vesel A, Maver T, Maver U, Kleinschek KS. Plasma induced hydrophilic cellulose wound dressing. In: Ven DTGMVD, editor. Cellulose—Medical, pharmaceutical and electronic applications. InTech; 2013.

    Google Scholar 

  48. Chan C-M, Ko T-M, Hiraoka H. Polymer surface modification by plasmas and photons. Surf Sci Rep. 1996;24(1):1–54.

    Article  CAS  Google Scholar 

  49. Guimond S, Hanselmann B, Amberg M, Hegemann D. Plasma functionalization of textiles: specifics and possibilities. Pure Appl Chem. 2010;82(6):1239–45.

    Article  CAS  Google Scholar 

  50. Peršin Z, Zaplotnik R, Kleinschek KS. Ammonia plasma treatment as a method promoting simultaneous hydrophilicity and antimicrobial activity of viscose wound dressings. Text Res J. 2014;84(2):140–56.

    Article  Google Scholar 

  51. Peršin Z, Vesel A, Kleinschek KS, Mozetič M. Characterisation of surface properties of chemical and plasma treated regenerated cellulose fabric. Text Res J. 2012;82(20):2078–89.

    Article  Google Scholar 

  52. Lawton RA, Price CR, Runge AF, Doherty WJ, Saavedra SS. Air plasma treatment of submicron thick PDMS polymer films: effect of oxidation time and storage conditions. Colloids Surf, A. 2005;253(1):213–5.

    Article  CAS  Google Scholar 

  53. Takke V, Behary N, Perwuelz A, Campagne C. Studies on the atmospheric air–plasma treatment of PET (polyethylene terephtalate) woven fabrics: effect of process parameters and of aging. J Appl Polym Sci. 2009;114(1):348–57.

    Article  CAS  Google Scholar 

  54. Jamie P, Saltveit ME. Postharvest changes in broccoli and lettuce during storage in argon, helium, and nitrogen atmospheres containing 2% oxygen. Postharvest Biol Technol. 2002;26(1):113–6.

    Article  CAS  Google Scholar 

  55. Klieber A, Bagnato N, Barrett R, Sedgley M. Effect of post-ripening nitrogen atmosphere storage on banana shelf life, visual appearance and aroma. Postharvest Biol Technol. 2002;25(1):15–24.

    Article  CAS  Google Scholar 

  56. Persin Z, Kleinschek KS, Mozetič M. The effects of storage gases on the durability of ammonia plasma effects with respect to wound fluid absorption and the biostatic activity of viscose non-wovens. Text Res J. 2013:0040517513507365.

    Google Scholar 

  57. Brehmer F, Haenssle H, Daeschlein G, Ahmed R, Pfeiffer S, Görlitz A, et al. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol. 2015;29(1):148–55.

    Article  CAS  Google Scholar 

  58. Isbary G, Heinlin J, Shimizu T, Zimmermann J, Morfill G, Schmidt HU, et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167(2):404–10.

    Article  CAS  Google Scholar 

  59. Isbary G, Morfill G, Schmidt H, Georgi M, Ramrath K, Heinlin J, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163(1):78–82.

    CAS  Google Scholar 

  60. Lee HJ, Shon CH, Kim YS, Kim S, Kim GC, Kong MG. Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma. New J Phys. 2009;11(11):115026.

    Article  Google Scholar 

  61. Haertel B, von Woedtke T, Weltmann K-D, Lindequist U. Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing. Biomol Ther. 2014;22(6):477–90.

    Article  CAS  Google Scholar 

  62. Ehlbeck J, Schnabel U, Polak M, Winter J, Von Woedtke T, Brandenburg R, et al. Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys. 2010;44(1):013002.

    Article  Google Scholar 

  63. Sysolyatina E, Vasiliev M, Kurnaeva M, Kornienko I, Petrov O, Fortov V, et al. Frequency of cell treatment with cold microwave argon plasma is important for the final outcome. J Phys D Appl Phys. 2016;49(29):294002.

    Article  Google Scholar 

  64. Wind DA. Einfluss von Leistungsparametern eines kalten, athmosphärischen Plasmajets auf die Destruktion von in-vitro-Biofilmen. 2013.

    Google Scholar 

  65. Gupta A, Avci P, Dai T, Huang Y-Y, Hamblin MR. Ultraviolet radiation in wound care: sterilization and stimulation. Adv Wound Care (New Rochelle). 2013;2(8):422–37.

    Article  Google Scholar 

  66. Humar M, Kwok SJ, Choi M, Yetisen AK, Cho S, Yun S-H. Toward biomaterial-based implantable photonic devices. Power. 2016;1:0–11.

    Google Scholar 

  67. Nizamoglu S, Gather MC, Humar M, Choi M, Kim S, Kim KS, et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat Commun. 2016;7:10374.

    Article  CAS  Google Scholar 

  68. Scott-Carnell LA, Siochi EJ, Leong KW. Device and method for healing wounds. Google Patents; 2010.

    Google Scholar 

  69. J. Potter M, Banwell P, Baldwin C, Clayton E, Irvine L, Linge C, et al. In vitro optimisation of topical negative pressure regimens for angiogenesis into synthetic dermal replacements. Burns. 2008;34(2):164–74.

    Article  Google Scholar 

  70. Lambert KV, Hayes P, McCarthy M. Vacuum Assisted Closure: A Review of Development and Current Applications. Eur J Vasc Endovasc Surg. 2005;29(3):219–26.

    Article  CAS  Google Scholar 

  71. Ciringer M, Triller C, Smrke D. Terapija s kontroliranim negativnim tlakom = Negative wound pressure therapy. Medicinski Razgledi. 2011;50:433–40.

    Google Scholar 

  72. Dissemond J, Kroger K, Storck M, Risse A, Engels P. Topical oxygen wound therapies for chronic wounds: a review. J Wound Care. 2015;24(2):53–4, 6–60, 2–3.

    Article  CAS  Google Scholar 

  73. Wu SC, Marston W, Armstrong DG. Wound care: The role of advanced wound healing technologies. J Vasc Surg. 2010;52(3, Suppl):59S–66S.

    Article  Google Scholar 

  74. Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K. Functional wound dressing materials with highly tunable drug release properties. RSC Adv. 2015;5(95):77873–84.

    Article  CAS  Google Scholar 

  75. Weiser JR, Saltzman WM. Controlled release for local delivery of drugs: barriers and models. J Controlled Release. 2014;190:664–73.

    Article  CAS  Google Scholar 

  76. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–923.

    Article  CAS  Google Scholar 

  77. Ramírez C, Gallegos I, Ihl M, Bifani V. Study of contact angle, wettability and water vapor permeability in carboxymethylcellulose (CMC) based film with murta leaves (Ugni molinae Turcz) extract. J Food Eng. 2012;109(3):424–9.

    Article  Google Scholar 

  78. Fan L, Du Y, Huang R, Wang Q, Wang X, Zhang L. Preparation and characterization of alginate/gelatin blend fibers. J Appl Polym Sci. 2005;96(5):1625–9.

    Article  CAS  Google Scholar 

  79. Sood A, Granick MS, Tomaselli NL. Wound dressings and comparative effectiveness data. Adv Wound Care. 2014;3(8):511–29.

    Article  Google Scholar 

  80. Gunavathi P. Development of combined wound dressings made of nylon-6/PCL nanomembrane. In: Shodhganga, editor. Wound dressings. 2015. p. 119–40.

    Google Scholar 

  81. Sussman C, Bates-Jensen BM. Wound care: a collaborative practice manual. Philadelphia: Wolters Kluwer Health/ Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  82. Rueda Lopez J, Arboix Perejamo M, Munoz Bueno AM, Rosell Moreno C, Blanco Blanco J, Ballester Torralba J, et al. Combined polyurethane foam and hydrogel dressing. Outcome in lesions of diverse etiology. Revista de Enfermeria. 2004;27(11):51–6.

    Google Scholar 

  83. Maver T, Gradišnik L, Kurečič M, Hribernik S, Smrke DM, Maver U, et al. Layering of different materials to achieve optimal conditions for treatment of painful wounds. Int J Pharm. 2017;529(1–2):576–88.

    Article  CAS  Google Scholar 

  84. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(24):4195–200.

    Article  CAS  Google Scholar 

  85. Jaklic D, Lapanje A, Zupancic K, Smrke D, Gunde-Cimerman N. Selective antimicrobial activity of maggots against pathogenic bacteria. J Med Microbiol. 2008;57(Pt 5):617–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Maver .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maver, T., Maver, U., Pivec, T., Kurečič, M., Persin, Z., Stana Kleinschek, K. (2018). Other Solutions to Achieve Desired Wound Healing Characteristics. In: Bioactive Polysaccharide Materials for Modern Wound Healing. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-89608-3_5

Download citation

Publish with us

Policies and ethics