Skip to main content

Active Substances for Acceleration of Wound Healing

  • Chapter
  • First Online:
Bioactive Polysaccharide Materials for Modern Wound Healing

Abstract

Modern approaches that influence wound healing actively to achieve rapid and complete healing of chronic wounds are in demand. There is a still unmet need for novel strategies to achieve expeditious wound healing because of the enormous financial burden worldwide. The next chapters, therefore, review some of the most daring novel solutions that could speed up the uptake of novel technologies into wound care, as well as some important advancements in this field that shall influence the modern wound treatment in the near future. Some aspects of advanced wound dressings to go beyond the state-of-the-art in this field, are shown in Fig. 4.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dreifke MB, Jayasuriya AA, Jayasuriya AC. Current wound healing procedures and potential care. Mater Sci Eng, C. 2015;48:651–62.

    Article  CAS  Google Scholar 

  2. Stanirowski PJ, Wnuk A, Cendrowski K, Sawicki W. Growth factors, silver dressings and negative pressure wound therapy in the management of hard-to-heal postoperative wounds in obstetrics and gynecology: a review. Arch Gynecol Obstet. 2015;292(4):757–75.

    Article  Google Scholar 

  3. Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M. Clinical application of growth factors and cytokines in wound healing. Wound Repair Regeneration. 2014;22(5):569–78.

    Article  Google Scholar 

  4. Grazul-Bilska AT, Johnson ML, Bilski JJ, Redmer DA, Reynolds LP, Abdullah A, et al. Wound healing: the role of growth factors. Drugs Today (Barc). 2003;39(10):787–800.

    Article  CAS  Google Scholar 

  5. Uhl D. PDGF, EGF and TGF-alpha. Promoters of cancer growth and wound healing. Med Monatsschr Pharm. 1991;14(5):130–1.

    CAS  Google Scholar 

  6. Dhivya S, Padma VV, Santhini E. Wound dressings—a review. Biomedicine (Taipei). 2015;5(4):22.

    Article  Google Scholar 

  7. Yao C, Yao P, Wu H, Zha Z. Acceleration of wound healing in traumatic ulcers by absorbable collagen sponge containing recombinant basic fibroblast growth factor. Biomed Mater. 2006;1(1):33.

    Article  CAS  Google Scholar 

  8. Singla S, Garg R, Kumar A, Gill C. Efficacy of topical application of beta urogastrone (recombinant human epidermal growth factor) in Wagner’s Grade 1 and 2 diabetic foot ulcers: Comparative analysis of 50 patients. J Nat Sci Biol Med. 2014;5(2):273.

    Article  CAS  Google Scholar 

  9. Layliev J, Wilson S, Warren SM, Saadeh PB. Improving wound healing with topical gene therapy. Adv Wound Care (New Rochelle). 2012;1(5):218–23.

    Article  Google Scholar 

  10. Nelson CE, Gupta MK, Adolph EJ, Guelcher SA, Duvall CL. siRNA delivery from an injectable scaffold for wound therapy. Adv Wound Care (New Rochelle). 2013;2(3):93–9.

    Article  Google Scholar 

  11. Viñas-Castells R, Holladay C, di Luca A, Díaz VM, Pandit A. Snail1 down-regulation using small interfering RNA complexes delivered through collagen scaffolds. Bioconjug Chem. 2009;20(12):2262–9.

    Article  CAS  Google Scholar 

  12. Nguyen PD, Tutela JP, Thanik VD, Knobel D, Allen RJ Jr, Chang CC, et al. Improved diabetic wound healing through topical silencing of p53 is associated with augmented vasculogenic mediators. Wound Repair Regeneration. 2010;18(6):553–9.

    Article  Google Scholar 

  13. Moura J, Børsheim E, Carvalho E. The role of micrornas in diabetic complications—special emphasis on wound healing. Genes. 2014;5(4):926–56.

    Article  CAS  Google Scholar 

  14. Madhyastha R, Madhyastha H, Nakajima Y, Omura S, Maruyama M. MicroRNA signature in diabetic wound healing: Promotive role of miR-21 in fibroblast migration. Int Wound J. 2012;9(4):355–61.

    Article  CAS  Google Scholar 

  15. Ramundo J, Gray M. Enzymatic wound debridement. J Wound Ostomy Continence Nurs. 2008;35(3).

    Article  Google Scholar 

  16. Alvarez OM, Fernandez-Obregon A, Rogers RS, Bergamo L, Masso J, Black M. Chemical debridement of pressure ulcers: a prospective, randomized, comparative trial of collagenase and papain/urea formulations. Wounds: a Compendium of Clinical Research and Practice. 2000;12:15–25.

    Google Scholar 

  17. Upton D, Solowiej K, Hender C, Woo KY. Stress and pain associated with dressing change in patients with chronic wounds. J Wound Care. 2012;21(2):53–61.

    Article  CAS  Google Scholar 

  18. Solowiej K, Mason V, Upton D. Psychological stress and pain in wound care, part 3: management. J Wound Care. 2010;19(4):153–5.

    Article  CAS  Google Scholar 

  19. Solowiej K, Upton D. Managing stress and pain to prevent patient discomfort, distress and delayed wound healing. Nurs Times. 2010;106(16):21–3.

    Google Scholar 

  20. Ignatova M, Rashkov I, Manolova N. Drug-loaded electrospun materials in wound-dressing applications and in local cancer treatment. Expert Opin Drug Deliv. 2013;10(4):469–83.

    Article  CAS  Google Scholar 

  21. Thu HE, Zulfakar MH, Ng SF. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int J Pharm. 2012;434(1–2):375–83.

    Article  CAS  Google Scholar 

  22. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–923.

    Article  CAS  Google Scholar 

  23. Maver T, Kurečič M, Smrke DM, Kleinschek KS, Maver U. Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol-Gel Sci Technol. 2015:1–12.

    Google Scholar 

  24. Maver T, Maver U, Mostegel F, Griesser T, Spirk S, Smrke DM, et al. Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose. 2015;22(1):749–61.

    Article  CAS  Google Scholar 

  25. Maver T, Kurečič M, Smrke DM, Kleinschek KS, Maver U. Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol-Gel Sci Technol. 2016;79(3):475–86.

    Article  CAS  Google Scholar 

  26. Maver T, Gradišnik L, Kurečič M, Hribernik S, Smrke D, Maver U, et al. Layering of different materials to achieve optimal conditions for treatment of painful wounds. Int J Pharm. 2017.

    Google Scholar 

  27. Price P, Fogh K, Glynn C, Krasner DL, Osterbrink J, Sibbald RG. Why combine a foam dressing with ibuprofen for wound pain and moist wound healing? Int Wound J. 2007;4(Suppl 1):1–3.

    Article  Google Scholar 

  28. Gantwerker EA, Hom DB. Skin: histology and physiology of wound healing. Clin Plast Surg. 2012;39(1):85–97.

    Article  Google Scholar 

  29. Petrulyte S. Advanced textile materials and biopolymers in wound management. Dan Med Bull. 2008;55(1):72–7.

    CAS  Google Scholar 

  30. Solowiej K, Mason V, Upton D. Psychological stress and pain in wound care, part 2: a review of pain and stress assessment tools. J Wound Care. 2010;19(3):110–5.

    Article  CAS  Google Scholar 

  31. Hotz-Behofsits CM, Walley MJ, Simpson R, Bjarnason IT. COX-1, COX-2 and the topical effect in NSAID-induced enteropathy. Inflammopharmacology. 2003;11(4):363–70.

    Article  CAS  Google Scholar 

  32. McPherson ML, Cimino NM. Topical NSAID formulations. Pain Med. 2013;14(Suppl 1):S35–9.

    Article  Google Scholar 

  33. Fogh K, Andersen MB, Bischoff-Mikkelsen M, Bause R, Zutt M, Schilling S, et al. Clinically relevant pain relief with an ibuprofen-releasing foam dressing: results from a randomized, controlled, double-blind clinical trial in exuding, painful venous leg ulcers. Wound Repair Regeneration. 2012;20(6):815–21.

    Article  Google Scholar 

  34. Steffansen B, Herping SPK. Novel wound models for characterizing ibuprofen release from foam dressings. Int J Pharm. 2008;364(1):150–5.

    Article  CAS  Google Scholar 

  35. Vinklarkova L, Masteikova R, Vetchy D, Dolezel P, Bernatoniene J. Formulation of novel layered sodium carboxymethylcellulose film wound dressings with ibuprofen for alleviating wound pain. Biomed Res Int. 2015;2015:892671.

    Article  CAS  Google Scholar 

  36. Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K. Functional wound dressing materials with highly tunable drug release properties. RSC Adv. 2015;5(95):77873–84.

    Article  CAS  Google Scholar 

  37. Manja Kurečič NV, Maver U, Stergar J, Gradišnik L, Kleinschek KS, Kolar M, Hribernik S. Effect of crosslinking on drug release from polysaccharide based electrospun mats. Carbohydrate Polymers. in press.

    Google Scholar 

  38. Maver T, Maver U, Mostegel F, Grieser T, Spirk S, Smrke D, et al. Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose. 2015;22:749–61.

    Article  CAS  Google Scholar 

  39. Pawar HV, Tetteh J, Boateng JS. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf, B. 2013;102:102–10.

    Article  CAS  Google Scholar 

  40. Morgado PI, Miguel SP, Correia IJ, Aguiar-Ricardo A. Ibuprofen loaded PVA/chitosan membranes: a highly efficient strategy towards an improved skin wound healing. Carbohyd Polym. 2017;159:136–45.

    Article  CAS  Google Scholar 

  41. McLure HA, Rubin AP. Review of local anaesthetic agents. Minerva Anestesiol. 2005;71(3):59–74.

    CAS  Google Scholar 

  42. Becker DE, Reed KL. Essentials of local anesthetic pharmacology. Anesth Prog. 2006;53(3):98–109.

    Article  Google Scholar 

  43. Nykanen D, Kissoon N, Rieder M, Armstrong R. Comparison of a topical mixture of lidocaine and prilocaine (EMLA) versus 1% lidocaine infiltration on wound healing. Pediatr Emerg Care. 1991;7(1):15–7.

    Article  CAS  Google Scholar 

  44. Eroglu E, Eroglu F, Agalar F, Altuntas I, Sutcu R, Ozbasar D. The effect of lidocaine/prilocaine cream on an experimental wound healing model. Eur J Emerg Med. 2001;8(3):199–201.

    Article  CAS  Google Scholar 

  45. Vinklárková L, Masteiková R, Foltýnová G, Muselík J, Pavloková S, Bernatonienė J, et al. Film wound dressing with local anesthetic based on insoluble carboxymethycellulose matrix. J Appl Biomed. 2017.

    Google Scholar 

  46. Catanzano O, Docking R, Schofield P, Boateng J. Advanced multi-targeted composite biomaterial dressing for pain and infection control in chronic leg ulcers. Carbohyd Polym. 2017;172:40–8.

    Article  CAS  Google Scholar 

  47. Kurečič M, Maver T, Virant N, Ojstršek A, Gradišnik L, Hribernik S, Kolar M, Maver U and Stana Kleinschek K. A multifunctional electrospun and dual nano-carrier biobased system for simultaneous detection of pH in the wound bed and controlled release of benzocaine Biometrials. in press.

    Google Scholar 

  48. Woo KY. Chronic wound-associated pain, psychological stress, and wound healing. Surg Technol Int. 2012;22:57–65.

    Google Scholar 

  49. Alamein MA, Liu Q, Stephens S, Skabo S, Warnke F, Bourke R, et al. Nanospiderwebs: artificial 3D extracellular matrix from nanofibers by novel clinical grade electrospinning for stem cell delivery. Adv Healthc Materi. 2013;2(5):702–17.

    Article  CAS  Google Scholar 

  50. Francis MP, Sachs PC, Madurantakam PA, Sell SA, Elmore LW, Bowlin GL, et al. Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture. J Biomed Mater Res, Part A. 2012;100(7):1716–24.

    Article  CAS  Google Scholar 

  51. Tuzlakoglu K, Santos MI, Neves N, Reis RL. Design of nano- and microfiber combined scaffolds by electrospinning of collagen onto starch-based fiber meshes: a man-made equivalent of natural extracellular matrix. Tissue Eng Part A. 2011;17(3–4):463–73.

    Article  CAS  Google Scholar 

  52. Maver T, Maver U, Stana Kleinschek K, Smrke DM, Kreft S. A review of herbal medicines in wound healing. Int J Dermatol. 2015:n/a–n/a.

    Google Scholar 

  53. Sim TF, Sherriff J, Hattingh HL, Parsons R, Tee LB. The use of herbal medicines during breastfeeding: a population-based survey in Western Australia. BMC Complement Altern Med. 2013;13:317.

    Article  Google Scholar 

  54. Anjoo K. Analytical evaluation of herbal drugs. INTECH Open Access Publisher; 2012.

    Google Scholar 

  55. Govindaraghavan S, Sucher NJ. Quality assessment of medicinal herbs and their extracts: criteria and prerequisites for consistent safety and efficacy of herbal medicines. Epilepsy Behav. 2015.

    Article  Google Scholar 

  56. Thelingwani R, Masimirembwa C. Evaluation of herbal medicines: value addition to traditional medicines through metabolism, pharmacokinetic and safety studies. Curr Drug Metab. 2014;15(10):942–52.

    Article  CAS  Google Scholar 

  57. Assessment report on Achillea millefolium L., herba. London, UK: European Medicines Agency; 2009. Contract No.: EMA/HMPC/290309/2009.

    Google Scholar 

  58. Blumenthal M. Bundesinstitut für Arzneimittel und Medizinprodukte. Commission E. In: Herbal medicine: expanded Commission E monographs. Newton, MA: Integrative Medicine Communications; 2000.

    Google Scholar 

  59. Caceres A, Cano O, Samayoa B, Aguilar L. Plants used in Guatemala for the treatment of gastrointestinal disorders. 1. Screening of 84 plants against enterobacteria. J Ethnopharmacol. 1990;30(1):55–73.

    Article  CAS  Google Scholar 

  60. Candan F, Unlu M, Tepe B, Daferera D, Polissiou M, Sokmen A, et al. Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J Ethnopharmacol. 2003;87(2–3):215–20.

    Article  CAS  Google Scholar 

  61. Benedek B, Kopp B, Melzig MF. Achillea millefolium L. s.l.—is the anti-inflammatory activity mediated by protease inhibition? J Ethnopharmacol. 2007;113(2):312–7.

    Article  Google Scholar 

  62. Goldberg AS, Mueller EC, Eigen E, Desalva SJ. Isolation of the anti-inflammatory principles from Achillea millefolium (Compositae). J Pharm Sci. 1969;58(8):938–41.

    Article  CAS  Google Scholar 

  63. Assesment report on Aloe barabadensis miller and Aloe (various species, mainly Aloer ferox miller and its hybrids). London, UK: European Medicines Agency; 2007. Contract No.: EMEA/HMPC/76313/2006.

    Google Scholar 

  64. Bruster S, Jarman B, Bosanquet N, Weston D, Erens R, Delbanco TL. National survey of hospital patients. BMJ. 1994;309(6968):1542–6.

    Article  CAS  Google Scholar 

  65. Davis RH, Leitner MG, Russo JM, Maro NP. Biological-activity of aloe-vera. Med Sci Res Biochem. 1987;15(5–6):235.

    Google Scholar 

  66. Schmidt JM, Greenspoon JS. Aloe vera dermal wound gel is associated with a delay in wound-healing. Obstet Gynecol. 1991;78(1):115–7.

    CAS  Google Scholar 

  67. Hook IL. Danggui to Angelica sinensis root: are potential benefits to European women lost in translation? A review. J Ethnopharmacol. 2014;152(1):1–13.

    Article  Google Scholar 

  68. Chen XP, Li W, Xiao XF, Zhang LL, Liu CX. Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin J Nat Med. 2013;11(6):577–87.

    Article  CAS  Google Scholar 

  69. Zhao H, Deneau J, Che GO, Li S, Vagnini F, Azadi P, et al. Angelica sinensis isolate SBD.4: composition, gene expression profiling, mechanism of action and effect on wounds, in rats and humans. Eur J Dermatol. 2012;22(1):58–67.

    CAS  Google Scholar 

  70. Hsiao CY, Hung CY, Tsai TH, Chak KF. A study of the wound healing mechanism of a traditional Chinese medicine, angelica sinensis, using a proteomic approach. Evid Based Complement Altern Med. 2012;2012:467531.

    Google Scholar 

  71. Assesment report on Avena sativa L., herba and Avena sativa L., fructus. London, UK: European Medicines Agency; 2008. Contract No.: EMEA/HMPC/202967/2007.

    Google Scholar 

  72. Agency EM. Assessment report on Avena sativa L., herba and Avena sativa L., fructus. European Medicines Agency; 2008.

    Google Scholar 

  73. Fabre B. Avena sativa, demande d’inscription en usage topique. Concept paper ed: Pierre Fabre Innovation Développement; 2004.

    Google Scholar 

  74. van der Nat JM, van der Sluis WG, de Haan AH, de Silva KT, Labadie RP. Ethnopharmacological Study of Azadirachta indica. A Conceptual Evaluation. Planta Med. 1986;6:552.

    Google Scholar 

  75. Ilango K, Maharajan G, Narasimhan S. Anti-nociceptive and anti-inflammatory activities of Azadirachta indica fruit skin extract and its isolated constituent azadiradione. Nat Prod Res. 2013;27(16):1463–7.

    Article  CAS  Google Scholar 

  76. Arora N, Bansal MP, Koul A. Modulatory effects of Azadirachta indica leaf extract on cutaneous and hepatic biochemical status during promotion phase of DMBA/TPA-induced skin tumorigenesis in mice. Indian J Biochem Biophys. 2013;50(2):105–13.

    CAS  Google Scholar 

  77. Koul A, Ghara AR, Gangar SC. Chemomodulatory effects of Azadirachta indica on the hepatic status of skin tumor bearing mice. Phytotherapy Res. 2006;20(3):169–77.

    Article  Google Scholar 

  78. Anyaehie UB. Medicinal properties of fractionated acetone/water neem [Azadirachta indica] leaf extract from Nigeria: a review. Niger J Physiol Sci. 2009;24(2):157–9.

    Google Scholar 

  79. Raina R, Parwez S, Verma PK, Pankaj NK. Medicinal plants and their role in wound healing. Vet Scan. 2008; 3(1).

    Google Scholar 

  80. Assessment report on Calendula officinalis L., flos. European Medicines Agency; 2008. Contract No.: EMEA/HMPC/179282/2007.

    Google Scholar 

  81. Jimenez-Medina E, Garcia-Lora A, Paco L, Algarra I, Collado A, Garrido F. A new extract of the plant Calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation. BMC Cancer. 2006;6:119.

    Article  Google Scholar 

  82. Janssen A, Chin N, Scheffer J, Svendsen A. Screening for antimicrobial activity of some essential oils by the agar overlay technique. Pharm World Sci. 1986;8(6):289–92.

    CAS  Google Scholar 

  83. Tarle D, Dvorzak I. Antimicrobial substances in Flos Calendulae. Farmacevtski Vestn. 1989;40:117–20.

    Google Scholar 

  84. Duran V, Matic M, Jovanovc M, Mimica N, Gajinov Z, Poljacki M, et al. Results of the clinical examination of an ointment with marigold (Calendula officinalis) extract in the treatment of venous leg ulcers. Int J Tissue React. 2005;27(3):101–6.

    CAS  Google Scholar 

  85. Blumenthal M, Busse WR. Bundesinstitut für Arzneimittel und M. The complete German Commission E monographs. In: Therapeutic guide to herbal medicines. Austin, Tex.; Boston: American Botanical Council, Integrative Medicine Communications; 1998.

    Google Scholar 

  86. Pivec T, Kargl R, Maver U, Bračič M, Elschner T, Gradišnik L, et al., editors. Enzymatic polymerization of rutin and its interaction with cellulose. In: International EPNOE junior scientists meeting 2; 2016; Sophia Antipolis, France Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Laboratory for Characterisation and Processing of Polymers.

    Google Scholar 

  87. Pivec T, Kargl R, Maver U, Bračič M, Elschner T, Gradišnik L, et al., editors. Encimska polimerizacija rutina Slovenski kemijski dnevi 2016. Portorož, Slovenia;2016.

    Google Scholar 

  88. Zeng WC, Zhang Z, Gao H, Jia LR, He Q. Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara). J Food Sci. 2012;77(7):C824–9.

    Article  CAS  Google Scholar 

  89. Perveen R, Azmi MA, Zaidi IH, Naqvi SN, Mahmood SM, Ajmal K, et al. Assessment of Cedrus deodara root oil on the histopathological changes in the gastrointestinal tissues in rats. Pak J Pharm Sci. 2013;26(3):571–6.

    CAS  Google Scholar 

  90. Patil S, Prakash T, Kotresha D, Rao NR, Pandy N. Antihyperlipidemic potential of Cedrus deodara extracts in monosodium glutamate induced obesity in neonatal rats. Indian J Pharmacol. 2011;43(6):644–7.

    Google Scholar 

  91. Sharma PR, Shanmugavel M, Saxena AK, Qazi GN. Induction of apoptosis by a synergistic lignan composition from Cedrus deodara in human cancer cells. Phytotherapy Res. 2008;22(12):1587–94.

    Article  CAS  Google Scholar 

  92. Coppen JJW, Food, Agriculture Organization of the United N. Flavours and fragrances of plant origin. Rome: Food and Agriculture Organization of the United Nations; 1995.

    Google Scholar 

  93. Gupta S, Walia A, Malan R. Phytochemistry and pharmacology of Cedrus deodara: an overview. Int J Pharm Sci Res. 2011;2(8):2010–20.

    Google Scholar 

  94. Assessment report on Centella asiatica (L.) Urban, herba. European Medicines Agency; 2012. Contract No.: EMA/HMPC/291177/2009.

    Google Scholar 

  95. Vishnu RG, Shivakumar HG, Parthasarathi G. Influence of aqueous extract of Centella asiatica (Brahmi) on experimental wounds in albino rats. Indian J Pharmacol. 1996;28(4):249–53.

    Google Scholar 

  96. Suguna L, Sivakumar P, Chandrakasan G. Effects of Centella asiatica extract on dermal wound healing in rats. Indian J Exp Biol. 1996;34(12):1208–11.

    CAS  Google Scholar 

  97. Maquart FX, Chastang F, Simeon A, Birembaut P, Gillery P, Wegrowski Y. Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur J Dermatol. 1999;9(4):289–96.

    CAS  Google Scholar 

  98. Shukla A, Rasik AM, Jain GK, Shankar R, Kulshrestha DK, Dhawan BN. In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. J Ethnopharmacol. 1999;65(1):1–11.

    Article  CAS  Google Scholar 

  99. Assessment report on Chamaemelum nobile (L.) All., flos. London, UK: European Medicines Agency; 2012. Contract No.: EMA/HMPC/560906/2010.

    Google Scholar 

  100. Petronilho S, Maraschin M, Coimbra MA, Rocha SM. In vitro and in vivo studies of natural products: a challenge for their valuation. The case study of chamomile (Matricaria recutita L.). Ind Crops Prod. 2012;40:1–12.

    Article  CAS  Google Scholar 

  101. Singh O, Khanam Z, Misra N, Srivastava MK. Chamomile (Matricaria chamomilla L.): an overview. Pharmacognosy Rev. 2011;5(9):82–95.

    Article  CAS  Google Scholar 

  102. Srivastava JK, Shankar E, Gupta S. Chamomile: a herbal medicine of the past with bright future. Mol Med Rep. 2010;3(6):895–901.

    CAS  Google Scholar 

  103. Goodall JM, Erasmus DJ. Review of the status and integrated control of the invasive alien weed, Chromolaena odorata, in South Africa. Agr Ecosyst Environ. 1996;56(3):151–64.

    Article  Google Scholar 

  104. Onkaramurthy M, Veerapur VP, Thippeswamy BS, Reddy TN, Rayappa H, Badami S. Anti-diabetic and anti-cataract effects of Chromolaena odorata Linn., in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2013;145(1):363–72.

    Article  CAS  Google Scholar 

  105. Kouame PB, Jacques C, Bedi G, Silvestre V, Loquet D, Barille-Nion S, et al. Phytochemicals isolated from leaves of Chromolaena odorata: impact on viability and clonogenicity of cancer cell lines. Phytotherapy Res. 2013;27(6):835–40.

    Article  CAS  Google Scholar 

  106. Pandith H, Thongpraditchote S, Wongkrajang Y, Gritsanapan W. In vivo and in vitro hemostatic activity of Chromolaena odorata leaf extract. Pharm Biol. 2012;50(9):1073–7.

    Article  Google Scholar 

  107. Pandith H, Zhang X, Liggett J, Min KW, Gritsanapan W, Baek SJ. Hemostatic and wound healing properties of chromolaena odorata leaf extract. ISRN Dermatol. 2013;2013:168269.

    Google Scholar 

  108. Akah PA. Mechanism of hemostatic activity of eupatorium odoratum. Pharm Biol. 1990;28(4):253–6.

    Google Scholar 

  109. Phan TT, Allen J, Hughes MA, Cherry G, Wojnarowska F. Upregulation of adhesion complex proteins and fibronectin by human keratinocytes treated with an aqueous extract from the leaves of Chromolaena odorata (Eupolin). Eur J Dermatol. 2000;10(7):522.

    CAS  Google Scholar 

  110. Assessment report on Commiphora molmol Engler, gummi-resina. London, UK: European Medicines Agency; 2012. Contract No.: EMA/HMPC/96910/2010.

    Google Scholar 

  111. European Scientific Cooperative on P. E/S/C/O/P monographs: the scientific foundation for herbal medicinal products. Exeter, U.K.; Stuttgart, Germany; New York: European Scientific Cooperative on Phytotherapy; Thieme; 2003.

    Google Scholar 

  112. Barnes J, Anderson LA, Phillipson JD. Herbal medicines. London; Grayslake, IL: Pharmaceutical Press; 2007.

    Google Scholar 

  113. Assement report on Curcuma Longa, L. Rhizoma. London, UK: European Medicines Agency; 2010. Contract No.: EMEA/HMPC/456848/2008.

    Google Scholar 

  114. Srimal RC, Khanna NM, Dhawan S. A preliminary report on anti-inflammatory activity of curcumin. Indian J Pharmacol. 1971;3:10.

    Google Scholar 

  115. Kumar A, Sharma VK, Singh HP, Prakash P, Singh SP. Efficacy of some indigenous drugs in tissue-repair in buffalos. Indian Vet J. 1993;70(1):42–0.

    CAS  Google Scholar 

  116. Kundu S, Biswas TK, Das P, Kumar S, De DK. Turmeric (Curcuma longa) rhizome paste and honey show similar wound healing potential: a preclinical study in rabbits. Int J Lower Extremity Wounds. 2005;4(4):205–13.

    Article  Google Scholar 

  117. Mehra KS, Mikuni I, Gupta U, Gode KD. Curcuma longa (Linn) drops in corneal wound healing. Tokai J Exp Clin Med. 1984;9(1):27–31.

    CAS  Google Scholar 

  118. Assesment report on Echinacea Purpurea (L.) Moench., Herba recens. London, UK: European Medicines Agency; 2008. Contract No.: EMEA/HMPC/104918/2006.

    Google Scholar 

  119. Wishart DJ. Encyclopedia of the great plains Indians, vol. viii. Lincoln: University of Nebraska Press; 2007. p. 252.

    Google Scholar 

  120. Bauer R, Foster S. Analysis of alkamides and caffeic acid derivatives from Echinacea simulata and E. paradoxa roots. Planta Med. 1991;57(5):447–9.

    Article  CAS  Google Scholar 

  121. Hostettmann K. Geschichte einer Pflanze am Beispiel von Echinacea. Forschende Komplementärmedizin und klassische Naturheilkunde = Research in complementary and natural classical medicine. 2003;10:9–12.

    Google Scholar 

  122. Reisch J, Spitzner W, Schulte KE. On the problem of the microbiological activity of simple acetylene compounds. Arzneimittelforschung. 1967;17(7):816–25.

    CAS  Google Scholar 

  123. Orinda D, Diederich J, Wacker A. Antiviral activity of components of Echinacea purpurea. Arzneimittelforschung. 1973;23(8):1119–20.

    CAS  Google Scholar 

  124. Skwarek T, Tynecka Z, LGlowniak K, Lutostanska E. Echinacea—inducer of interferons. Herba Pol. 1996;42:110–7.

    Google Scholar 

  125. Binns SE, Purgina B, Bergeron C, Smith ML, Ball L, Baum BR, et al. Light-mediated antifungal activity of Echinacea extracts. Planta Med. 2000;66(3):241–4.

    Article  CAS  Google Scholar 

  126. Clifford LJ, Nair MG, Rana J, Dewitt DL. Bioactivity of alkamides isolated from Echinacea purpurea (L.) Moench. Phytomedicine. 2002;9(3):249–53.

    Article  CAS  Google Scholar 

  127. Merali S, Binns S, Paulin-Levasseur M, Ficker C, Smith M, Baum B, et al. Antifungal and anti-inflammatory activity of the Genus Echinacea. Pharm Biol. 2003;41(6):412–20.

    Article  CAS  Google Scholar 

  128. Kinkel HJ, Plate M, Tullner HU. Effect of Echinacin ointment in healing of skin lesions. Med Klin. 1984;79:580–3.

    Google Scholar 

  129. Ramesh KV, Padmavathi K. Assessment of immunomodulatory activity of Euphorbia hirta L. Indian J Pharm Sci. 2010;72(5):621–5.

    Article  Google Scholar 

  130. Fayaz Ahmad S, Sultan P, Ashour AE, Khan TH, Attia SM, Bakheet SA, et al. Modulation of Th1 cytokines and inflammatory mediators by Euphorbia hirta in animal model of adjuvant-induced arthritis. Inflammopharmacology. 2013;21(5):365–75.

    Article  Google Scholar 

  131. Jaiprakash B, Chandramohan, Reddy DN. Burn wound healing activity of Euphorbia hirta. Ancient Sci Life. 2006;25(3–4):16–8.

    Google Scholar 

  132. Nagori BP, Solanki R. Role of medical plants in wound healing. Res J Med Plant. 2011;5(4):392–405.

    Article  Google Scholar 

  133. Assessment report on Ginkgo biloba L., folium. London, UK: European Medicines Agency; 2014. Contract No.: EMA/HMPC/321095/2012.

    Google Scholar 

  134. Newall CA, Anderson LA, Phillipson JD. Herbal medicines: a guide for health-care professionals. London: Pharmaceutical Press; 1996.

    Google Scholar 

  135. Final report on the safety assessment of Arnica montana extract and Arnica montana. Int J Toxicol. 2001;20 Suppl 2:1–11.

    Google Scholar 

  136. Oliveira LAT, Souza VRC, Endringer DC, Hendrickson DA, Coelho CS. Effects of topical application of sunflower-seed oil on experimentally induced wounds in horses. J Equine Vet Sci. 2012;32(3):139–45.

    Article  Google Scholar 

  137. Sechi LA, Lezcano I, Nunez N, Espim M, Duprè I, Pinna A, et al. Antibacterial activity of ozonized sunflower oil (Oleozon). J Appl Microbiol. 2001;90(2):279–84.

    Article  CAS  Google Scholar 

  138. Jain SK, Tarafdar CR. Medicine plant love of Sautals (A review of P.O. Bodding’s work). Econ Bot. 1970;24:241.

    Article  Google Scholar 

  139. Deshpande PJ, Pathak SN, Shankaran PS. Healing of experimental wounds with helianthus annus. Indian J Med Res. 1965;53:539–44.

    CAS  Google Scholar 

  140. Oommen ST, Rao M, Raju CV. Effect of oil of hydnocarpus on wound healing. Int J Lepr Other Mycobact Dis. 1999;67(2):154–8.

    CAS  Google Scholar 

  141. Norton SA. Useful plants of dermatology. I. Hydnocarpus and chaulmoogra. J Am Acad Dermatol. 1994;31(4):683–6.

    Article  CAS  Google Scholar 

  142. Oommen ST. The effect of oil of hydnocarpus on excision wounds. Int J Lepr Other Mycobact Dis. 2000;68(1):69–70.

    CAS  Google Scholar 

  143. Sharma DK, Hall IH. Hypolipidemic, anti-inflammatory, and antineoplastic activity and cytotoxicity of flavonolignans isolated from Hydnocarpus wightiana seeds. J Nat Prod. 1991;54(5):1298–302.

    Article  CAS  Google Scholar 

  144. Assessment report on Hypericum Perforatum L., Herba. London, UK: European Medicines Agency; 2009. Contract No.: EMA/HMPC/101303/2008.

    Google Scholar 

  145. Sosa S, Pace R, Bornancin A, Morazzoni P, Riva A, Tubaro A, et al. Topical anti-inflammatory activity of extracts and compounds from Hypericum perforatum L. J Pharm Pharmacol. 2007;59(5):703–9.

    Article  CAS  Google Scholar 

  146. Panossian AG, Gabrielian E, Manvelian V, Jurcic K, Wagner H. Immunosuppressive effects of hypericin on stimulated human leukocytes: inhibition of the arachidonic acid release, leukotriene B4 and Interleukin-Iα production, and activation of nitric oxide formation. Phytomedicine. 1996;3(1):19–28.

    Article  CAS  Google Scholar 

  147. Saddiqe Z, Naeem I, Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharmacol. 2010;131(3):511–21.

    Article  CAS  Google Scholar 

  148. Gibbons S, Ohlendorf B, Johnsen I. The genus Hypericum–a valuable resource of anti-Staphylococcal leads. Fitoterapia. 2002;73(4):300–4.

    Article  CAS  Google Scholar 

  149. Öztürk N, Korkmaz S, Öztürk Y. Wound-healing activity of St. John’s Wort (Hypericum perforatum L.) on chicken embryonic fibroblasts. J Ethnopharmacol. 2007;111(1):33–9.

    Article  CAS  Google Scholar 

  150. Electronic Code of Federal Regulations—Substances generally recognized as safe, Part 182 (2014).

    Google Scholar 

  151. Chaturvedi AP, Kumar M, Tripathi YB. Efficacy of Jasminum grandiflorum L. leaf extract on dermal wound healing in rats. Int Wound J. 2012.

    Google Scholar 

  152. Nayak BS, Mohan K. Influence of ethanolic extract of Jasminum grandflorum linn flower on wound healing activity in rats. Indian J Physiol Pharmacol. 2007;51(2):189–94.

    CAS  Google Scholar 

  153. Desphande PJ, Pathak SN. Effect of ghee medicated with Jasminum auriculatum on experimental Wound. Indian J Med Res. 1966;1.

    Google Scholar 

  154. Desphande PJ, Pathak SN. Influence of Juice of leaves of Jasminum auriculatum on experimental wounds in albino rats. Med Surg. 1966;6.

    Google Scholar 

  155. Sandra A, Shenoi SD, Srinivas CR. Allergic contact dermatitis from red sandalwood (Pterocarpus santalinus). Contact Dermatitis. 1996;34(1):69.

    Article  CAS  Google Scholar 

  156. Biswas TK, Maity LN, Mukherjee B. The clinical evaluation of Pterocarpus santalinus Linn. Ointment on lower extremity wounds–a preliminary report. Int J Lower Extremity Wounds. 2004;3(4):227–32.

    Article  Google Scholar 

  157. Biswas TK, Maity LN, Mukherjee B. Wound healing potential of Pterocarpus santalinus linn: a pharmacological evaluation. Int J Lower Extremity Wounds. 2004;3(3):143–50.

    Article  Google Scholar 

  158. Kwon HJ, Hong YK, Kim KH, Han CH, Cho SH, Choi JS, et al. Methanolic extract of Pterocarpus santalinus induces apoptosis in HeLa cells. J Ethnopharmacol. 2006;105(1–2):229–34.

    Article  CAS  Google Scholar 

  159. Assessment report on Rosmarinus officinalis L., aetheroleum and Rosmarinus officinalis L., folium. London, UK: European Medicines Agency; 2011. Contract No.: EMA/HMPC/13631/2009.

    Google Scholar 

  160. Abu-Al-Basal MA. Healing potential of Rosmarinus officinalis L. on full-thickness excision cutaneous wounds in alloxan-induced-diabetic BALB/c mice. J Ethnopharmacol. 2010;131(2):443–50.

    Article  CAS  Google Scholar 

  161. Yaduvanshi B, Mathur R, Mathur SR, Velpandian T. Evaluation of wound healing potential of topical formulation of leaf juice of tridax procumbens L. In mice. Indian J Pharm Sci. 2011;73(3):303–6.

    CAS  Google Scholar 

  162. Diwan PV, Tilloo LD, Kulkarni DR. Steroid depressed wound healing and Tridax procumbens. Indian J Physiol Pharmacol. 1983;27(1):32–6.

    CAS  Google Scholar 

  163. Udupa SL, Udupa AL, Kulkarni DR. Influence of Tridax procumbens on lysyl oxidase activity and wound healing. Planta Med. 1991;57(4):325–7.

    Article  CAS  Google Scholar 

  164. World Wound Care Markets 2011: Kalorama; 2011. Available from: http://www.kaloramainformation.com/Wound-Care-6422062/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Maver .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maver, T., Maver, U., Pivec, T., Kurečič, M., Persin, Z., Stana Kleinschek, K. (2018). Active Substances for Acceleration of Wound Healing. In: Bioactive Polysaccharide Materials for Modern Wound Healing. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-89608-3_4

Download citation

Publish with us

Policies and ethics