Skip to main content

Seasonal and Annual Variations in Soil Respiration of the Artificial Landscapes (Moscow Botanical Garden)

  • Conference paper
  • First Online:

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

Cities emit 30–40% of total greenhouse gases emissions and are responsible for 45–70% of total energy-related CO2 emissions. CO2 fluxes in cities consist of a complex balance of biogenic and anthropogenic sources. Despite the evidence that biogenic urban CO2 fluxes can be important, we still know little about the magnitude of the urban biogenic CO2 flux. Our study included two main tasks: (1) estimation of annual carbon dioxide efflux by urban forest soils the case of the Botanical Garden arboretum (Lomonosov Moscow State University) and the assessment of its seasonal dynamics; (2) to identify the factors responsible for the annual and seasonal variations of soil respiration. Studies were carried out on the two stationary plots with plantations of Picea obovata (spruce) and Carpinus betulus (hornbeam) from 2014 to 2017 years (starting in October). Annual CO2 flux depending on the year and type of plantation was from 1750 to 3180 g CO2 m−2 yr−1. Summer period (when the soil temperature at 10 cm depth was above 10 ℃) was more than half the annual soil CO2 efflux. In the seasonal aspect, the role of abiotic factors (soil temperature and moisture) in the dynamics of soil respiration is different. Soil temperature plays a key role in the dynamics of soil respiration during the mid-seasons (spring and autumn). When the soil temperature reaches 10 ℃, its role decreases, the soil moisture becomes the determining (limiting) factor. In the winter, early spring and, possibly, late autumn periods, other factors and processes may be leading, such as soil freezing-thawing, pronounced gas diffusion and dissolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haygarth, P.M., Ritz, K.: The future of soils and land use in the UK: soil systems for the provision of land-based ecosystem services. Land Use Policy 26, 187–197 (2009)

    Article  Google Scholar 

  2. Lavelle, P., et al.: Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, 3–15 (2006)

    Article  Google Scholar 

  3. Blum, W.E.H.: Functions of soil for society and the environment. Rev. Environ. Sci. Technol. 4, 75–79 (2005)

    Google Scholar 

  4. NRC (National Research Council): Basic Research Opportunities in Earth Science. National Resources Council, Washington, D.C. (2001)

    Google Scholar 

  5. Jónsson, J.Ö.G., DavíÐsdóttir, B.: Classification and valuation of soil ecosystem service. Agric. Syst. 145, 24–38 (2016). https://doi.org/10.1016/j.agsy.2016.02.010

    Article  Google Scholar 

  6. Marcotullio, P.J.: Urbanization, energy use and greenhouse gas emissions. In: Seto, K.C., Solecki, W.D. (eds.) The Routledge Handbook of Urbanization and Global Environmental Change, pp. 106–124. Routledge, London (2016)

    Google Scholar 

  7. Satterthwaite, D.: Cities’ contribution to global warming: notes on the allocation of greenhouse gas emissions. Environ. Urban 20(2), 539–549 (2008). https://doi.org/10.1177/0956247808096127

    Article  Google Scholar 

  8. IEA: World Energy Outlook (2008). OECD Publishing, Paris. http://dx.doi.org/10.1787/weo-2008-en

  9. Belluccoa, V., Marras, S., Grimmondc, S., Järvi, L., Sircaa, C., Spanoa, D.: Modelling the biogenic CO2 exchange in urban and non-urban ecosystems through the assessment of light-response curve parameters. Agric. For. Meteorol. 236, 113–122 (2017). https://doi.org/10.1016/j.agrformet.2016.12.011

    Article  Google Scholar 

  10. Hutyra, L.R., et al.: Urbanization and the carbon cycle: current capabilities and research outlook from the natural sciences perspective. Earth Future 2(10), 473–495 (2014). https://doi.org/10.1002/2014EF000255

    Article  Google Scholar 

  11. Kennedy, C., et al.: Methodology for inventorying greenhouse gas emissions from global cities. Ener. Policy 38(9), 4828–4837 (2010). https://doi.org/10.1016/j.enpol.2009.08.050

    Article  CAS  Google Scholar 

  12. Chen, Y., Day, S.D., Shrestha, R.K., Strahm, B.D., Wiseman, P.E.: Influence of urban land development and soil rehabilitation on soil-atmosphere greenhouse gas fluxes. Geoderma 226–227, 348–353 (2014). https://doi.org/10.1016/j.geoderma.2014.03.017

    Article  CAS  Google Scholar 

  13. Chun, J.A., et al.: Estimation of CO2 effluxes from suburban forest floor and grass using a process-based model. Atmos. Environ. 97, 346–352 (2014). https://doi.org/10.1016/j.atmosenv.2014.08.044

    Article  CAS  Google Scholar 

  14. Groffman, P.M., et al.: Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. For. Ecol. Manag. 236(2–3), 177–192 (2006). https://doi.org/10.1016/j.foreco.2006.09.002

    Article  Google Scholar 

  15. Kaye, J.P., McCulley, R.L., Burkez, I.C.: C fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob. Change Biol. 11, 575–587 (2005). https://doi.org/10.1111/j.1365-2486.2005.00921.x

    Article  Google Scholar 

  16. Shchepeleva, A.S., Vasenev, V.I., Mazirov, I.M., Vasenev, I.I., Prokhorov, I.S., Gosse, D.D.: Changes of soil organic carbon stocks and CO2 emissions at the early stages of urban turf grasses’ development. Urban Ecosyst. 20(2), 1–13 (2016)

    Google Scholar 

  17. Smorkalov, I.A., Vorobeichik, E.L.: The impact of a large industrial city on the soil respiration in forest ecosystems. Eurasian Soil Sci. 48(1), 106–114 (2015). https://doi.org/10.1134/S1064229315010147

    Article  CAS  Google Scholar 

  18. Vesala, T., et al.: Surface-atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus B 60(2), 188–199 (2008). https://doi.org/10.1111/j.1600-0889.2007.00312.x

    Article  CAS  Google Scholar 

  19. Rawlins, B.G., Vane, C.H., Kim, A.W., Tye, A.M., Kemp, S.J., Bellamy, P.H.: Methods for estimating types of soil organic carbon and their application to surveys of UK urban areas. Soil Use Manage. 24, 47–59 (2008)

    Article  Google Scholar 

  20. Rossiter, D.G.: Classification of urban and industrial soils in the world reference base for soil resources. J. Soils Sed. 7, 96–100 (2007)

    Article  CAS  Google Scholar 

  21. Don, A., Schumacher, J., Freibauer, A.: Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob. Change Biol. 17, 1658–1670 (2011)

    Article  Google Scholar 

  22. Guo, L.B., Gifford, R.M.: Soil C stocks and land use change: a meta-analysis. Glob. Change Biol. 8, 345–360 (2002)

    Article  Google Scholar 

  23. Li, D.J., Niu, S.L., Luo, Y.Q.: Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol. 195, 172–181 (2012)

    Article  CAS  Google Scholar 

  24. Demidov, A.S., Potapova, S.A.: The way to solve the strategic problems on botanical gardens in the field of plants biological diversity saving. In: Biologicheskie problemy kriolitozony: Materialy Vserossiiskoi konferentsii, posvyashchennoi 60-letiyu so dnya obrazovaniya Instituta biologicheskih problem kriolitozony SO RAN (30 iyulya–5 avgusta 2012, Yakutsk) (Proc All-Russian Conf. Dedicated to the 60-th Anniversary of Creation the Institute of Biological Problems on Cryolithozone Siberian Branch of Russian Academy of Sciences: “Biological Problems on Cryolithozone”, July 30–Aug. 5, 2012, Yakutsk), Yakutsk (2012). (in Russian)

    Google Scholar 

  25. Rappoport, A.V., Stroganova, M.N.: Anthropogenic soils in megalopolises botanical gardens and factors of their stability. In: Vliyanie rekreatsii na lesnye ekosistemy i ikh komponenty (Recreation Effect onto Forest Ecosystems and Their Components), Division of Scientific Technical Information of Pushchino Scientific Center Russ. Acad. Sci., Moscow (2004). (in Russian)

    Google Scholar 

  26. IUSS, Working Group WRB: World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, FAO, Rome (2015)

    Google Scholar 

  27. Riveros-Iregui, D.A., McGlynn, B.L., Epstein, H.E., Welsch, D.L.: Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: discrete surface chambers and continuous soil CO2 concentration probe. J. Geophys Res. Biogeosci. 113(4), 453 (2008)

    Google Scholar 

  28. Smagin, A.V.: Gazovaya faza pochv (Gas Phase of Soils). Mosk Gos Univ., Moscow (2005). (in Russian)

    Google Scholar 

  29. Vorobyova, L.A.: Soil Chemical Analysis. MSU, Moscow (1998). (in Russian)

    Google Scholar 

  30. Goncharova, O.Y., Semenyuk, O.V., Matyshak, G.V., Bobrik, A.A.: Seasonal dynamics of soil CO2 production in the arboretum of the Moscow State University botanical garden. Moscow Univ. Soil Sci. Bull. 71(2), 43–50 (2016)

    Article  Google Scholar 

  31. Elberling, B.: Seasonal trends of soil CO2 dynamics in a soil subject to freezing. J. Hydrol. 276, 159–175 (2003). https://doi.org/10.1016/S0022-1694(03)00067-2

    Article  CAS  Google Scholar 

  32. Kurganova, I.N., De Gerenuy, V.L., Rozanova, L., Sapronov, D., Myakshina, T., Kudeyarov, V.: Annual and seasonal CO2 fluxes from Russian southern taiga soils. Tellus, Ser. B Chem. Phys. Meteorol. 55(2), 338–344 (2003)

    Article  Google Scholar 

  33. Decina, S.M., Hutyra, L.R., Gately, C.K., Getson, J.M., Reinmann, A.B., et al.: Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area. Env. Poll. 212, 433–439 (2016). https://doi.org/10.1016/j.envpol.2016.01.012

    Article  CAS  Google Scholar 

  34. Ng, B.J.L., et al.: Carbon fluxes from an urban tropical grassland. Envir. Pollut. 203, 227–234 (2015). https://doi.org/10.1016/j.envpol.2014.06.009

    Article  CAS  Google Scholar 

  35. Stroganova, M.N., Rappoport, A.V.: Specific features of anthropogenic soils in botanical gardens of metropolises in the southern taiga subzone. Eurasian Soil Sci. 38(9), 966–972 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Goncharova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goncharova, O.Y., Matyshak, G.V., Udovenko, M.M., Bobrik, A.A., Semenyuk, O.V. (2019). Seasonal and Annual Variations in Soil Respiration of the Artificial Landscapes (Moscow Botanical Garden). In: Vasenev, V., Dovletyarova, E., Cheng, Z., Prokof’eva, T., Morel, J., Ananyeva, N. (eds) Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services. SUITMA 2017. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-319-89602-1_15

Download citation

Publish with us

Policies and ethics