Targeting by Numbers. The Uses of Statistics for Monitoring French Welfare Benefit Recipients

  • Vincent Dubois
  • Morgane Paris
  • Pierre-Edouard Weill
Chapter
Part of the Logic, Argumentation & Reasoning book series (LARI, volume 17)

Abstract

The targeting of welfare recipients in order to control their situation and their entitlement has increased from the beginning of the 2000s onwards. Data mining has recently been included in the set of techniques used for this purpose, in addition to traditional bureaucratic checks of documents, home inspection visits, and to data crossing. Imported from the private sector, this statistical tool is part and parcel of a “risk management” policy of the family branch of French social security. It has been promoted as the cornerstone of recipients’ monitoring since 2010. Analyzing the use of this method enables us to show the new relationships between statistical instruments, legal norms, and performance indicators which define the administration of the Poor in the neomanagerial era. Thanks to statistical correlations, this tool identifies welfare recipients’ features significantly associated with the highest level of risks of irregularities. Then, scoring algorithms enable local managers to target high-risk populations over which in-depth checks are performed. This has led to positive financial results, but also to an increasing focus of surveillance on the most disadvantaged households. Based on interviews with executives of the National Family Benefits Fund (Caisse nationale des allocations familiales - CNAF) and with local managers, ethnographic observation of street-level bureaucrats’ daily work and quantitative analysis of national and local data, our contribution is twofold: on the use of statistical modeling in welfare policies implementation; on the compounding of control in the contemporary government of the poor.

Keywords

Statistics Data mining Welfare benefits Lower class Social control 

References

  1. Baudot, P.-Y. (2011). L’incertitude des instruments. L’informatique administrative et le changement dans l’action publique (1966–1975). Revue française de science politique, 61(1), 79–103.CrossRefGoogle Scholar
  2. Buchet, D. (2013). Le paiement à “bon droit” des prestations sociales des CAF. Informations sociales, 178, 97–103.Google Scholar
  3. Castel, R. (1981). La Gestion des risques. De l’anti-psychiatrie à l’après-psychanalyse. Paris: Minuit.Google Scholar
  4. Collinet, P. (2013). Focus – Le data mining dans les CAF: une réalité, des perspectives. Informations sociales, 178, 129–132.Google Scholar
  5. Desrosières, A. (1993). La politique des grands nombres. Paris: La Découverte.Google Scholar
  6. Desrosières, A. (2014). Prouver et gouverner. Une analyse politique des statistiques publiques. Paris: La Découverte.Google Scholar
  7. Dubois V. (2003), Les conditions socio-politiques de la rigueur juridique. Politique de contrôle et lutte contre la fraude aux prestations sociales, CNAF, Dossier d’études, n° 48.Google Scholar
  8. Dubois, V. (2010). The bureaucrat and the poor: Encounters in French welfare offices. London: Routledge.Google Scholar
  9. Fontaine, M., & Sicsic, M. (2015). « Des indicateurs précoces de pauvreté et d’inégalités – Résultats expérimentaux pour 2014. Insee Analyses, 23.Google Scholar
  10. Galanter, M. (1974). Why the Haves come out Ahead? Law and Society Review, 9(1), 95–160.CrossRefGoogle Scholar
  11. Harcourt B. (2005). Against prediction: Sentencing, policing, and punishing in an actuarial age. University of Chicago Public Law & Legal Theory Working Paper, 94.Google Scholar
  12. Harcourt B. (2014). Digital security in the expository society: Spectacle, surveillance, and exhibition in the neoliberal age of big data. Columbia Public Law Research Paper, 14–404.Google Scholar
  13. INSEE. (2017). Les allocataires contrôlés par les caisses d’Allocations familiales en 2015, L’essentiel, 169.Google Scholar
  14. Lazarus, J. (2012). Prévoir la défaillance de crédit: l’ambition du scoring. Raisons politiques, 48, 103–118.CrossRefGoogle Scholar
  15. Lipsky, M. (1980). Street-level bureaucracy: Dilemmas of the individual in public services. New York: Russell Sage Foundation.Google Scholar
  16. Ollion, É. (2015). L’abondance et ses revers. Big data, open data et recherches sur les questions sociales. Informations sociales, 191, 70–79.Google Scholar
  17. Parton, N. (2008). Changes in the form of knowledge in social work: From the social to the informational? British Journal of Social Work, 38(2), 253–269.CrossRefGoogle Scholar
  18. Peretti-Watel, P. (2005). La culture du risque, ses marqueurs sociaux et ses paradoxes. Une exploration empirique. Revue économique, 56(2), 371–392.CrossRefGoogle Scholar
  19. Spire, A. (2012). Faibles et puissants face à l’impôt. Paris: Raisons d’agir.Google Scholar
  20. Wacquant, L. (2010). Crafting the neoliberal state: Workfare, prisonfare, and social insecurity1. Sociological Forum, 25(2), 197–220.CrossRefGoogle Scholar
  21. Warin, P. (2016). Le non-recours aux politiques sociales. Grenoble: Presses universitaires de Grenoble.Google Scholar
  22. Zuurmond, A. (2008). Bureaucratic bias and access to public services: The fight against non-take-up. In J. De Jong & G. Rizvi (Eds.), The state of access. Success and failure of democracies to create equal opportunities (pp. 148–166). Washington, DC: Brookings Institution Press.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vincent Dubois
    • 1
  • Morgane Paris
    • 1
  • Pierre-Edouard Weill
    • 2
  1. 1.Université de Strasbourg – SAGEStrasbourgFrance
  2. 2.Lab-LEX (EA 7480)Université de Bretagne OccidentaleBrestFrance

Personalised recommendations