Advertisement

Intelligent Sensing Systems – Status of Research at KaProm

  • Zivana Jakovljevic
  • Milica Petrovic
  • Stefan Mitrovic
  • Zoran Miljkovic
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Within Industrie 4.0 intelligent sensing systems represent an indispensable asset with significant role in enabling shifting from automated to intelligent manufacturing. Instead of being simple transducers, intelligent sensors are able to retrieve useful information from raw signal. They represent systems with integrated computation and communication capabilities, that run sophisticated and real time applicable algorithms and communicate the necessary information to the other elements of the manufacturing facility.

In this paper we present the recent research results in the field of intelligent sensing systems that were accomplished at Laboratory for Manufacturing Automation and Laboratory for Robotics and Artificial Intelligence at Department for Production Engineering (KaProm) at Faculty of Mechanical Engineering in Belgrade. Presented systems are intended for application in various manufacturing processes, such as machining, assembly, manipulation, material transport, rubber processing lines. They are based on application of different non-stationary signal processing (Discrete Wavelet Transform, Huang-Hilbert transform) and machine learning and artificial intelligence techniques (Support Vector Machines, Artificial Neural Networks, bio-inspired algorithms, clustering methods, fuzzy inference mechanisms). The most of developed systems are implemented in embedded devices and their real-world applicability is demonstrated.

Keywords

Intelligent sensing systems Cyber physical systems Industrie 4.0 

Notes

Acknowledgments

We wish to express our gratitude to the Ministry of Education and Science of Serbia for providing financial support under grants TR35004, TR35020 and TR35023.

References

  1. 1.
    ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M., Bernard, A.: Product variety management. CIRP Ann. Manuf. Technol. 62(2), 629–652 (2013)CrossRefGoogle Scholar
  2. 2.
    Thoben, K.D., Wiesner, S.A., Wuest, T.: Industrie 4.0 and smart manufacturing – a review of research issues and application examples. Int. J. Autom. Technol. 11(1), 4–16 (2017)CrossRefGoogle Scholar
  3. 3.
    Berger, C., Hees, A., Braunreuther, S., et al.: characterization of cyber-physical sensor systems. Procedia CIRP 41, 638–643 (2016)CrossRefGoogle Scholar
  4. 4.
    Jakovljevic, Z., Mitrovic, S., Pajic, M.: Cyber physical production systems-an IEC 61499 perspective. In: Proceedings of 5th International Conference on Advanced Manufacturing Engineering and Technologies, LNME, pp. 27–39. Springer, Heidelberg (2017). ISBN 978-3-319-56429-6Google Scholar
  5. 5.
    Mitrović, S., Jakovljević, Ž.: An application of distributed control system based on IEC 61499 and 802.15.4. In: Proceedings of ETIKUM 2017 Conference, Faculty of Technical Sciences in Novi Sad, pp. 37–40 (2017). ISBN 978-86-6022-00-68Google Scholar
  6. 6.
    Nihtianov, S., Tan, Z., George, B.: New trends in smart sensors for industrial applications – part I. IEEE Trans. Industr. Electron. 64(9), 7281–7283 (2017)CrossRefGoogle Scholar
  7. 7.
    Li, X., Li, D., Wan, J., Vasilakos, A.V., Lai, C.-F., Wang, S.: A review of industrial wireless networks in the context of industry 4.0. Wireless Netw. 23(1), 23–41 (2017)CrossRefGoogle Scholar
  8. 8.
    Kagermann, H., Wahlster, W.: Recommendations for Implementing the Strategic Initiative Industrie 4.0 (2013). http://www.acatech.de/fileadmin/userupload/BaumstrukturnachWebsite/Acatech/root/de/MaterialfuerSonderseiten/Industrie4.0/FinalreportIndustrie4.0accessible.pdf
  9. 9.
    Abellan-Nebot, J.V., Romero Subirón, F.: A review of machining monitoring systems based on artificial intelligence process models. Int. J. Adv. Manuf. Technol. 47(1–4), 237–257 (2010)CrossRefGoogle Scholar
  10. 10.
    Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D.: Advanced monitoring of machining operations. CIRP Ann. Manuf. Technol. 59(2), 717–739 (2010)CrossRefGoogle Scholar
  11. 11.
    Wegener, K., Bleicher, F., Krajnik, P., Hoffmeister, H.-W., Brecher, C.: Recent developments in grinding machines. CIRP Ann. Manuf. Technol. 66(2), 779–802 (2017)CrossRefGoogle Scholar
  12. 12.
    Colledani, M., Tolio, T., Fischer, A., Iung, B., Lanza, G., Schmitt, R., Váncza, J.: Design and management of manufacturing systems for production quality. CIRP Ann. Manuf. Technol. 63(2), 773–796 (2014)CrossRefGoogle Scholar
  13. 13.
    SPARC: The Partnership for Robotics in Europe. Robotics 2020 Multi-Annual Roadmap for Robotics in Europe (2017). http://www.eurobotics-project.eu
  14. 14.
    SPARC: The Partnership for Robotics in Europe Strategic Research Agenda for Robotics in Europe 2014–2020 (2017). http://www.eurobotics-project.eu
  15. 15.
    Krüger, J., Lien, T.K., Verl, A.: Cooperation of human and machines in assembly lines. CIRP Ann. Manuf. Technol. 58(2), 628–646 (2009)CrossRefGoogle Scholar
  16. 16.
    Jakovljević, Ž.: Comparative analysis of Hilbert Huang and discrete wavelet transform in processing of signals obtained from the cutting process: an intermittent turning example. FME Trans. 41, 342–348 (2013)Google Scholar
  17. 17.
    Petrovic, P.B., Jakovljevic, Z., Milacic, V.R.: Context sensitive recognition of abrupt changes in cutting process. Expert Syst. Appl. 37(5), 3721–3729 (2010)CrossRefGoogle Scholar
  18. 18.
    Jakovljevic, Z., Pajic, M., Aleksendric, D., Pajic, M.: Wireless sensor network application in monitoring of machining operations. In: Proceedings, 34th International Conference on Production Engineering, Faculty of Mechanical Engineering in Nis, pp. 365–368 (2011). ISBN: 978-86-6055-019-6Google Scholar
  19. 19.
    Jakovljević, Ž., Petrović, P.B.: A New system for textile web feeding at calendering lines in tiremaking industry. In: Proceedings of the Fifth International Conference Heavy Machinery HM 2005, Faculty of Mechanical Engineering in Kraljevo, pp. I B.17–I B.20 (2005). ISBN: 86-82631-28-8Google Scholar
  20. 20.
    Miljković, Z., Mitić, M., Lazarević, M., Babić, B.: Neural network reinforcement learning for visual control of robot manipulators. Expert Syst. Appl. 40(5), 1721–1736 (2013)CrossRefGoogle Scholar
  21. 21.
    Jakovljevic, Z., Puzovic, R., Pajic, M.: Recognition of planar segments in point cloud based on wavelet transform. IEEE Trans. Industr. Inf. 11(2), 342–352 (2015)Google Scholar
  22. 22.
    Jakovljevic, Z., Petrovic, P.B.: Recognition of contact states in robotized assembly using qualitative wavelet based features and support vector machines. In: Proceedings of the 36th International MATADOR Conference, pp. 305–308. Springer Verlag London Ltd. (2010). ISBN: 978-1-84996-431-9CrossRefGoogle Scholar
  23. 23.
    Jakovljevic, Z., Petrovic, P.B., Hodolic, J.: Contact states recognition in robotic part mating based on support vector machines. Int. J. Adv. Manuf. Technol. 59, 377–395 (2012)CrossRefGoogle Scholar
  24. 24.
    Jakovljevic, Z., Petrovic, B.P., Mikovic, V.D., Pajic, M.: Fuzzy inference mechanism for recognition of contact states in intelligent robotic assembly. J. Intell. Manuf. 25(3), 571–587 (2014)CrossRefGoogle Scholar
  25. 25.
    Bøgh, S., Hvilshøj, M., Kristiansen, M.: Identifying and evaluating suitable tasks for autonomous industrial mobile manipulators. Int. J. Adv. Manuf. Technol. 61, 713–726 (2012)CrossRefGoogle Scholar
  26. 26.
    Mitrović, S., Jakovljević, Ž., Dimić, Z., Miljkovic, Z.: Neural networks based control system of a mobile robot for obstacle avoidance in 2D space (In Serbian). In: JUPITER Conference in Belgrade, vol. 40, pp. 4.18–4.28 (2016). ISBN 978-86-7083-893-2Google Scholar
  27. 27.
    Mitić, M., Vuković, N., Petrović, M., Miljković, Z.: Chaotic metaheuristic algorithms for learning and reproduction of robot motion trajectories. Neural Comput. Appl. 1–19 (2016)Google Scholar
  28. 28.
    Miljković, Z., Petrović, M.: Application of modified multi-objective particle swarm optimisation algorithm for flexible process planning problem. Int. J. Comput. Integr. Manuf. 30(2–3), 271–291 (2017)CrossRefGoogle Scholar
  29. 29.
    Petrović, M., Mitić, M., Vuković, N., Miljković, Z.: Chaotic particle swarm optimization algorithm for flexible process planning. Int. J. Adv. Manuf. Technol. 85(9–12), 2535–2555 (2016)CrossRefGoogle Scholar
  30. 30.
    Petrović, M., Petronijević, J., Mitić, M., Vuković, N., Miljković, Z., Babić, B.: The Ant Lion optimization algorithm for integrated process planning and scheduling. Appl. Mech. Mater. 834, 187–192 (2016)CrossRefGoogle Scholar
  31. 31.
    Petrović, M., Miljković, Z., Babić, B.: Integration of process planning, scheduling and mobile robot navigation based on TRIZ and multi-agent methodology. FME Trans. 41(2), 120–129 (2013)Google Scholar
  32. 32.
    Petrović, M., Vuković, N., Mitić, M., Miljković, Z.: Integration of process planning and scheduling using chaotic particle swarm optimization algorithm. Expert Syst. Appl. 64, 569–588 (2016)CrossRefGoogle Scholar
  33. 33.
    Mitić, M., Vuković, N., Petrović, M., Miljković, Z.: Chaotic fruit fly optimization algorithm. Knowl.-Based Syst. 89, 446–458 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zivana Jakovljevic
    • 1
  • Milica Petrovic
    • 1
  • Stefan Mitrovic
    • 2
  • Zoran Miljkovic
    • 1
  1. 1.Faculty of Mechanical EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.Lola InstituteBelgradeSerbia

Personalised recommendations