Advertisement

Abstract

In this paper a definition and classification of hybrid processes is given with the focus on assisted hybrid machining processes developed at the Faculty of Mechanical Engineering in Ljubljana. These processes include high-pressure jet assisted machining, cryogenic machining, laser assisted machining and ultrasonic assisted machining. The principles of each individual process are described, followed by the presentations of the results of machinability and productivity improvements. The results were obtained during the last eight years of research on machinability of different hard-to-machine materials at the Department for Management of Manufacturing Technologies.

Keywords

High-pressure jet assisted machining Cryogenic machining Laser assisted machining Ultrasonic assisted machining 

References

  1. 1.
    Janssen, A., et al.: Hybrid production systems. In: Brecher, C. (ed.) Integrative Production Technology for High-Wage Countries. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Gupta, K., Jain, N.K., Laubscher, R.F.: Hybrid Machining Processes: Perspectives on Machining and Finishing. Springer Briefs in Applied Sciences and Technology. Springer, Cham (2016)CrossRefGoogle Scholar
  3. 3.
    Rajurkar, K.P., Zhu, D., McGeough, J.A., Kozak, J., De Silva, A.: New developments in electro-chemical machining. Ann. CIRP 48(2), 567–579 (1999)CrossRefGoogle Scholar
  4. 4.
    Kozak, J., Rajurkar, K.P.: Hybrid machining process evaluation and development. In: Proceedings of 2nd International Conference on Machining and Measurements of Sculptured Surfaces, Keynote Paper, Krakow, pp. 501–536 (2000)Google Scholar
  5. 5.
    Schuh, G., Kreysa, J., Orilski, S.: Roadmap ‘‘HybrideProduktion’’. Zeitschrift fur Wirtschftlichen Fabrikbetrieb 104(5), 385–391 (2009).  https://doi.org/10.3139/104.110072CrossRefGoogle Scholar
  6. 6.
    Nau, B., Roderburg, A., Klocke, F.: Ramp-up of hybrid manufacturing technologies. CIRP J. Manufact. Sci. Technol. 4(3), 313–316 (2011).  https://doi.org/10.1016/j.cirpj.2011.04.003CrossRefGoogle Scholar
  7. 7.
    Zhu, Z., Dhokia, V.G., Nassehi, A., Newman, S.T.: A review of hybrid manufacturing processes – state of the art and future perspectives. Int. J. Comput. Integr. Manuf. 26(7), 596–615 (2013).  https://doi.org/10.1080/0951192x.2012.749530CrossRefGoogle Scholar
  8. 8.
    Lauwers, B., Klocke, F., Klink, A., Tekkaya, A.E., Neugebauer, R., Mcintosh, D.: Hybrid processes in manufacturing. Ann. CIRP 63, 561–583 (2014).  https://doi.org/10.1016/j.cirp.2014.05.003CrossRefGoogle Scholar
  9. 9.
    Kramar, D., Krajnik, P., Kopac, J.: Capability of high pressure cooling in the turning of surface hardened piston rods. J. Mater. Process. Technol. 210(2), 212–218 (2010).  https://doi.org/10.1016/j.jmatprotec.2009.09.002CrossRefGoogle Scholar
  10. 10.
    Courbon, C., Kramar, D., Krajnik, P., Pusavec, F., Rech, J., Kopac, J.: Investigation of machining performance in high-pressure jet assisted turning of Inconel 718: an experimental study. Int. J. Mach. Tools Manuf. 49(14), 1114–1125 (2009).  https://doi.org/10.1016/j.ijmachtools.2009.07.010CrossRefGoogle Scholar
  11. 11.
    Courbon, C., Sajn, V., Kramar, D., Rech, J., Kosel, F., Kopac, J.: Investigation of machining performance in high pressure jet assisted turning of Inconel 718: a numerical model. J. Mater. Process. Technol. 211(11), 1834–1851 (2011).  https://doi.org/10.1016/j.jmatprotec.2011.06.006CrossRefGoogle Scholar
  12. 12.
    Kramar, D., Sekulic, M., Jurkovic, Z., Kopac, J.: The machinability of nickel-based alloys in high-pressure jet assisted (HPJA) turning. Metalurgija 52(4), 512–514 (2013). http://hrcak.srce.hr/100829Google Scholar
  13. 13.
    Sekulic, M., Kovac, P., Gostimirovic, M., Kramar, D.: Optimization of high-pressure jet assisted turning process by Taguchi method. Adv. Prod. Eng. Manag. 8(1), 5–12 (2013).  https://doi.org/10.14743/apem2013.1.148CrossRefGoogle Scholar
  14. 14.
    Kramar, D., Cica, D., Sredanovic, B., Kopac, J.: Design of fuzzy expert system for predicting of surface roughness in high-pressure jet assisted turning using bioinspired algorithms. Artif. Intell. Eng. Des. Anal. Manuf. 30(1), 96–106 (2016).  https://doi.org/10.1017/s0890060415000189CrossRefGoogle Scholar
  15. 15.
    Pusavec, F., Kramar, D., Krajnik, P., Kopac, J.: Transitioning to sustainable production. Part 2, evaluation of sustainable machining technologies. J. Clean. Prod. 18(12), 1211–1221 (2010).  https://doi.org/10.1016/j.jclepro.2010.01.015CrossRefGoogle Scholar
  16. 16.
    Pusavec, F.: Porous tungsten machining under cryogenic conditions. Int. J. Refract. Metals Hard Mater. 35, 84–89 (2012).  https://doi.org/10.1016/j.ijrmhm.2012.04.009CrossRefGoogle Scholar
  17. 17.
    Pusavec, F., Lu, T., Courbon, C., Rech, J., Aljancic, U., Kopac, J., Jawahir, I.S.: Analysis of the influence of nitrogen phase and surface heat transfer coefficient on cryogenic machining performance. J. Mater. Process. Technol. 233, 19–28 (2016).  https://doi.org/10.1016/j.jmatprotec.2016.02.003CrossRefGoogle Scholar
  18. 18.
    Muzenic, D., Kramar, D., Sekulic, M., Gostimirovic, M., Kopac, J.: Hybrid manufacturing: cutting processes with laser assistance. In: Proceedings of 12th International Scientific Conference MMA 2015 - Flexible Technologies (2015)Google Scholar
  19. 19.
    Muzenic, D., Potocnik, P., Govekar, E., Kramar, D.: Optimisation of a laser assisted milling process by using response surface methodology and artificial neural networks. In: Proceedings, International Conference on Innovative Technologies, TECH 2017 (2017)Google Scholar
  20. 20.
    Pucovski, V., Sekulic, M., Kramar, D., Gostimirovic, M., Kopac, J.: Ultrasonic assisted turning. In: Proceedings of 12th International Scientific Conference MMA 2015 - Flexible Technologies (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations