Double Face of eHsp70 in Front of Different Situations

Multiple Role of eHsp70
  • Maria M. Barreca
  • Fabiana GeraciEmail author
Part of the Heat Shock Proteins book series (HESP, volume 14)


The Hsp70 family is one of the best conserved and abundant member of the heat shock proteins (HSP). This family includes several members and in particular one constitutively expressed member (Hsc70) and another one inducibly expressed under several stress conditions (Hsp70). To date, the intracellular functions of Hsp70 are well defined, and increasing evidences establish its roles in the extracellular environment, such as cytoprotection and immunomodulation. Increasing evidences suggest that several cell types are able to release Hsp70 in the extracellular environment, both under physiological and stress conditions. At the same time many release mechanisms have been identified. This chapter briefly reviews recent advances in our understanding on extracellular Hsp70 role in both physiological and pathological conditions. A better comprehension will be useful to take advantage of its potential as a therapeutic target.


eHsp70 Hsp70 export Cellular receptors Immune response Cell migration 



antigen presenting cell


central nervous system


cerebrospinal fluid


cytotoxic T lymphocyte


dendritic cells


experimental autoimmune encephalomyelitis


extracellular matrix


endoplasmic reticulum


extracellular vesicle


heat shock protein


human umbilical vein endothelial cell




myelin basic protein


major histocompatibility complex;


multiple sclerosis


nuclear factor kB


natural killer


peripheral blood lymphocyte


radical oxygen species


toll like receptor



This research was supported by grants from the University of Palermo.


  1. Abkin, S. V., Pankratova, K. M., Komarova, E. Y., Guzhova, I. V., & Margulis, B. A. (2013). Hsp70 chaperone-based gel composition as a novel immunotherapeutic anti-tumor tool. Cell Stress & Chaperones, 18, 391–396.CrossRefGoogle Scholar
  2. Adachi, H., Katsuno, M., Waza, M., Minamiyama, M., Tanaka, F., & Sobue, G. (2009). Heat shock proteins in neurodegenerative diseases: Pathogenic roles and therapeutic implications. International Journal of Hyperthermia, 25, 647–654.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aneja, R., Odoms, K., Dunsmore, K., Shanley, T. P., & Wong, H. R. (2006). Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. Journal of Immunology, 177, 7184–7192.CrossRefGoogle Scholar
  4. Aquino, D. A., Klipfel, A. A., Brosnan, C. F., & Norton, W. T. (1993). The 70-kDa heat shock cognate protein (HSC70) is a major constituent of the central nervous system and is up-regulated only at the mRNA level in acute experimental autoimmune encephalomyelitis. Journal of Neurochemistry, 61, 1340–1348.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aquino, D. A., Capello, E., Weisstein, J., Sanders, V., Lopez, C., Tourtellotte, W. W., Brosnan, C. F., Raine, C. S., & Norton, W. T. (1997). Multiple sclerosis: Altered expression of 70- and 27-kDa heat shock proteins in lesions and myelin. Journal of Neuropathology and Experimental Neurology, 56, 664–672.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Arispe, N., Doh, M., & De Maio, A. (2002). Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress & Chaperones, 7, 330–338.CrossRefGoogle Scholar
  7. Arispe, N., Doh, M., Simakova, O., Kurganov, B., & De Maio, A. (2004). Hsc70 and Hsp70 interact with phosphatideylserine on the surface of PC12 cells resulting in a decrease of viability. The FASEB Journal, 18, 1636–1645.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arnold-Schild, D., Hanau, D., Spehner, D., Schmid, C., Rammensee, H. G., de la Salle, H., & Schild, H. (1999). Cutting edge: Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. Journal of Immunology, 162, 3757–3760.Google Scholar
  9. Asea, A. (2003). Chaperokine-induced signal transduction pathways. Exercise Immunology, 9, 25–33.Google Scholar
  10. Asea, A. (2005). Stress proteins and initiation of immune response: Chaperokine activity of hsp72. Exercise Immunology Review, 11, 34–45.PubMedPubMedCentralGoogle Scholar
  11. Asea, A. (2006). Initiation of the immune response by extracellular Hsp72: Chaperokine activity of Hsp72. Current Immunology Reviews, 2, 209–215.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Asea, A. (2007). Hsp72 release: Mechanisms and methodologies. Methods, 43, 194–198.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Asea, A. (2008). Hsp70: A chaperokine. Novartis Foundation Symposium, 291, 173–179. discussion 179-183:221-224.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Asea, A., Kraeft, S. K., Kurt-Jones, E. A., Stevenson, M. A., Chen, L. B., Finberg, R. W., Koo, G. C., & Calderwood, S. K. (2000). HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Medicine, 6, 435–442.CrossRefPubMedGoogle Scholar
  15. Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., Auron, P. E., Stevenson, M. A., & Calderwood, S. K. (2002). Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. The Journal of Biological Chemistry, 277, 15028–15034.CrossRefPubMedGoogle Scholar
  16. Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Barreca, M. M., Spinello, W., Cavalieri, V., Turturici, G., Sconzo, G., Kaur, P., Tinnirello, R., Asea, A. A., & Geraci, F. (2017). Extracellular Hsp70 enhances mesoangioblast migration via an autocrine signaling pathway. Journal of Cellular Physiology, 232, 1845–1861.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Basu, S., Binder, R. J., Suto, R., Anderson, K. M., & Srivastava, P. K. (2000). Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. International Immunology, 12, 1539–1546.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Basu, S., Binder, R. J., Ramalingam, T., & Srivastava, P. K. (2001). CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity, 14, 303–313.CrossRefGoogle Scholar
  20. Bausero, M. A., Gastpar, R., Multhoff, G., & Asea, A. (2005). Alternative mechanism by which IFN-gamma enhances tumor recognition: Active release of heat shock protein 72. Journal of Immunology, 175, 2900–2912.CrossRefGoogle Scholar
  21. Becker, T., Hartl, F. U., & Wieland, F. (2002). CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. The Journal of Cell Biology, 158, 1277–1285.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Beere, H. M. (2004). “The stress of dying”: The role of heat shock proteins in the regulation of apoptosis. Journal of Cell Science, 117, 2641–2651.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bendz, H., Ruhland, S. C., Pandya, M. J., Hainzl, O., Riegelsberger, S., Braüchle, C., Mayer, M. P., Buchner, J., Issels, R. D., & Noessner, E. (2007). Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. The Journal of Biological Chemistry, 282, 31688–31702.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Beuret, N., Stettler, H., Renold, A., Rutishauser, J., & Spiess, M. (2004). Expression of regulated secretory proteins is sufficient to generate granule-like structures in constitutively secreting cells. The Journal of Biological Chemistry, 279, 20242–20249.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Blander, J. M., & Medzhitov, R. (2004). Regulation of phagosome maturation by signals from toll-like receptors. Science, 304, 1014–1018.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bluestone, J. A. (2005). Regulatory T-cell therapy: Is it ready for the clinic? Nature Reviews. Immunology, 5, 343–349.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Borges, T. J., Wieten, L., van Herwijnen, M. J., Broere, F., van der Zee, R., Bonorino, C., & van Eden, W. (2012). The anti-inflammatory mechanisms of Hsp70. Frontiers in Immunology, 3, 1–12.CrossRefGoogle Scholar
  28. Broquet, A. H., Thomas, G., Masliah, J., Trugnan, G., & Bachelet, M. (2003). Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. The Journal of Biological Chemistry, 278, 21601–21606.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Brown, I. R. (1991). Expression of heat shock genes (hsp70) in the mammalian nervous system. Results and Problems in Cell Differentiation, 17, 217–229.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Bukau, B., Weissman, J., & Horwich, A. (2006). Molecular chaperones and protein quality control. Cell, 125, 443–451.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Calderwood, S. K., Mambula, S. S., Gray, P. J., Jr., & Theriault, J. R. (2007). Extracellular heat shock proteins in cell signalling. FEBS Letters, 581, 3689–3694.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Calderwood, S. K., Murshid, A., & Gong, J. (2012). Heat shock proteins: Conditional mediators of inflammation in tumor immunity. Frontiers in Immunology, 3, 1–10.CrossRefGoogle Scholar
  33. Castelli, C., Ciupitu, A. M., Rini, F., Rivoltini, L., Mazzocchi, A., Kiessling, R., & Parmiani, G. (2001). Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Research, 61, 222–227.PubMedPubMedCentralGoogle Scholar
  34. Chabas, D., Baranzini, S. E., Mitchell, D., Bernard, C. C., Rittling, S. R., Denhardt, D. T., Sobel, R. A., Lock, C., Karpuj, M., Pedotti, R., Heller, R., Oksenberg, J. R., & Steinman, L. (2001). The influence of the pro-inflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science, 294, 1731–1735.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Chase, M. A., Wheeler, D. S., Lierl, K. M., Hughes, V. S., Wong, H. R., & Page, K. (2007). Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4- and NF-kappaB-dependent mechanism. Journal of Immunology, 179, 6318–6324.CrossRefGoogle Scholar
  36. Chen, X., Tao, Q., Yu, H., Zhang, L., & Cao, X. (2002). Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunology Letters, 84, 81–87.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Chen, S., Bawa, D., Besshoh, S., Gurd, J. W., & Brown, I. R. (2005). Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. Journal of Neuroscience Research, 81(4), 522–529.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Chen, T., Guo, J., Han, C., Yang, M., & Cao, X. (2009). Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. Journal of Immunology, 182, 1449–1459.CrossRefGoogle Scholar
  39. Chen, E., Xue, D., Zhang, W., Lin, F., & Pan, Z. (2015). Extracellular heat shock protein 70 promotes osteogenesis of human mesenchymal stem cells through activation of the ERK signaling pathway. FEBS Letters, 589, 4088–4096.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Chiba, S., Yokota, S., Yonekura, K., Tanaka, S., Furuyama, H., Kubota, H., Fujii, N., & Matsumoto, H. (2006). Autoantibodies against HSP70 family proteins were detected in the cerebrospinal fluid from patients with multiple sclerosis. Journal of the Neurological Sciences, 241, 39–43.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ciocca, D. R., & Calderwood, S. K. (2005). Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 10, 86–103.CrossRefGoogle Scholar
  42. Clark, P. R., & Ménoret, A. (2001). The inducible Hsp70 as a marker of tumor immunogenicity. Cell Stress & Chaperones, 6, 121–125.CrossRefGoogle Scholar
  43. Clayton, A., Turkes, A., Navabi, H., Mason, M. D., & Tabi, Z. (2005). Induction of heat shock proteins in B-cell exosomes. Journal of Cell Science, 118, 3631–3638.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Collins, P. L., & Hightower, L. E. (1982). Newcastle disease virus stimulates the cellular accumulation of stress (heat shock) mRNAs and proteins. Journal of Virology, 44, 703–707.Google Scholar
  45. Dello Russo, C., Polak, P. E., Mercado, P. R., Spagnolo, A., Sharp, A., Murphy, P., Kamal, A., Burrows, F. J., Fritz, L. C., & Feinstein, D. L. (2006). The heat-shock protein 90 inhibitor17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. Journal of Neurochemistry, 99, 1351–1362.CrossRefGoogle Scholar
  46. Delneste, Y., Magistrelli, G., Gauchat, J., Haeuw, J., Aubry, J., Nakamura, K., Kawakami-Honda, N., Goetsch, L., Sawamura, T., Bonnefoy, J., & Jeannin, P. (2002). Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity, 17, 353–362.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dressel, R., Elsner, L., Quentin, T., Walter, L., & Günther, E. (2000). Heat shock protein 70 is able to prevent heat shock-induced resistance of target cells to CTL. Journal of Immunology, 164, 2362–2371.CrossRefGoogle Scholar
  48. Dutta, S. K., Girotra, M., Singla, M., Dutta, A., Otis Stephen, F., Nair, P. P., & Merchant, N. B. (2012). Serum HSP70: A novel biomarker for early detection of pancreatic cancer. Pancreas, 41, 530–534.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Edbladh, M., Ekstrom, P. A., & Edstrom, A. (1994). Retrograde axonal transport of locally synthesized proteins, e.g., actin and heat shock protein 70, in regenerating adult frog sciatic sensory axons. Journal of Neuroscience Research, 38, 424–432.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Eder, K., Guan, H., Sung, H. Y., Ward, J., Angyal, A., Janas, M., Sarmay, G., Duda, E., Turner, M., Dower, S. K., Francis, S. E., Crossman, D. C., & Kiss-Toth, E. (2008). Tribbles-2 is a novel regulator of inflammatory activation of monocytes. International Immunology, 20, 1543–1550.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Elstner, A., Stockhammer, F., Nguyen-Dobinsky, T. N., Nguyen, Q. L., Pilgermann, I., Gill, A., Guhr, A., Zhang, T., von Eckardstein, K., Picht, T., Veelken, J., Martuza, R. L., von Deimling, A., & Kurtz, A. (2011). Identification of diagnostic serum protein profiles of glioblastoma patients. Journal of Neuro-Oncology, 102, 71–80.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Enomoto, Y., Bharti, A., Khaleque, A. A., Song, B., Liu, C., Apostolopoulos, V., Xing, P. X., Calderwood, S. K., & Gong, J. (2006). Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. Journal of Immunology, 177, 5946–5955.CrossRefGoogle Scholar
  53. Evdokimovskaya, Y., Skarga, Y., Vrublevskaya, V., & Morenkov, O. (2010). Secretion of the heat shock proteins HSP70 and HSC70 by baby hamster kidney (BHK-21) cells. Cell Biology International, 34, 985–990.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Evdonin, A. L., Martynova, M. G., Bystrova, O. A., Guzhova, I. V., Margulis, B. A., & Medvedeva, N. D. (2006). The release of Hsp70 from A431 carcinoma cells is mediated by secretory-like granules. European Journal of Cell Biology, 85, 443–455.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annual Review of Physiology, 61, 243–282.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Fevrier, B., & Raposo, G. (2004). Exosomes: Endosomal-derived vesicles shipping extra- cellular messages. Current Opinion in Cell Biology, 16, 415–421.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Fischer, N., Haug, M., Kwok, W. W., Kalbacher, H., Wernet, D., Dannecker, G. E., & Holzer, U. (2010). Involvement of CD91 and scavenger receptors in Hsp70-facilitated activation of human antigen-specific CD4+ memory T cells. European Journal of Immunology, 40, 986–997.CrossRefPubMedGoogle Scholar
  58. Fiskum, G. (2004). Mechanisms of neuronal death and neuroprotection. Journal of Neurosurgical Anesthesiology, 16, 108–110.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Franco, L., Terrinca, J., Rodríguez, A. B., Espino, J., & Pariente, J. A. (2016). Extracellular heat shock proteins protect U937 cells from H2O2-induced apoptotic cell death. Molecular and Cellular Biochemistry, 412, 19–26.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Futagami, S., Hiratsuka, T., Shindo, T., Hamamoto, T., Horie, A., Ueki, N., Kusunoki, M., Gudis, K., Miyake, K., Tsukui, T., & Sakamoto, C. (2008). Extracellular HSP70 blocks CD40L-induced apoptosis and tubular formation in endothelial cells. Journal of Gastroenterology and Hepatology, 23, S222–S228.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Galazka, G., Stasiolek, M., Walczak, A., Jurewicz, A., Zylicz, A., Brosnan, C. F., Raine, C. S., & Selmaj, K. W. (2006). Brain-derived heat shock protein 70-peptide complexes induce NK cell-dependent tolerance to experimental autoimmune encephalomyelitis. Journal of Immunology, 176, 1588–1599.CrossRefGoogle Scholar
  62. Gallucci, S., Lolkema, M., & Matzinger, P. (1999). Natural adjuvants: Endogenous activators of dendritic cells. Nature Medicine, 5, 1249–1255.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Gao, Y. L., Brosnan, C. F., & Raine, C. S. (1995). Experimental autoimmune encephalomyelitis. Qualitative and semiquantitative differences in heat shock protein 60 expression in the central nervous system. Journal of Immunology, 154, 3548–3556.Google Scholar
  64. Garrido, C., Gurbuxani, S., Ravagnan, L., & Kroemer, G. (2001). Heat shock proteins: Endogenous modulators of apoptotic cell death. Biochemical and Biophysical Research Communications, 286, 433–442.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Gastpar, R., Gross, C., Rossbacher, L., Ellwart, J., Riegger, J., & Multhoff, G. (2004). The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. Journal of Immunology, 172, 972–980.CrossRefGoogle Scholar
  66. Gastpar, R., Gehrmann, M., Bausero, M. A., Asea, A., Gross, C., Schroeder, J. A., & Multhoff, G. (2005). Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Research, 65, 5238–5247.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gehrmann, M., Schmetzer, H., Eissner, G., Haferlach, T., Hiddemann, W., & Multhoff, G. (2003). Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: A tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica, 88, 474–476.PubMedPubMedCentralGoogle Scholar
  68. Gehrmann, M., Cervello, M., Montalto, G., Cappello, F., Gulino, A., Knape, C., Specht, H. M., & Multhoff, G. (2014). Heat shock protein 70 serum levels differ significantly in patients with chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Frontiers in Immunology, 5, 1–7.CrossRefGoogle Scholar
  69. Geng, H., Zhang, G. M., Xiao, H., Yuan, Y., Li, D., Zhang, H., Qiu, H., He, Y. F., & Feng, Z. H. (2006). HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. International Journal of Cancer, 118, 2657–2664.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Giffard, R. G., Xu, L., Zhao, H., Carrico, W., Ouyang, Y., Qiao, Y., Sapolsky, R., Steinberg, G., Hu, B., & Yenari, M. A. (2004). Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. The Journal of Experimental Biology, 207, 3213–3220.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Giraldo, E., Hinchado, M. D., Garcia, J. J., & Ortega, E. (2008). Influence of gender and oral contraceptives intake on innate and inflammatory response. Role of neuroendocrine factors. Molecular and Cellular Biochemistry, 313, 147–153.PubMedCrossRefPubMedCentralGoogle Scholar
  72. González-Ramos, M., Calleros, L., López-Ongil, S., Raoch, V., Griera, M., Rodríguez-Puyol, M., de Frutos, S., & Rodríguez-Puyol, D. (2013). HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 upregulation. The International Journal of Biochemistry & Cell Biology, 45, 232–242.CrossRefGoogle Scholar
  73. Greene, C. M., Carroll, T. P., Smith, S. G., Taggart, C. C., Devaney, J., Griffin, S., O’neill, S. J., & McElvaney, N. G. (2005). TLR-induced inflammation in cystic fibrosis and non-cystic fibrosis airway epithelial cells. Journal of Immunology, 174, 1638–1646.CrossRefGoogle Scholar
  74. Gross, C., Schmidt-Wolf, I. G., Nagaraj, S., Gastpar, R., Ellwart, J., Kunz-Schughart, L. A., & Multhoff, G. (2003a). Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress & Chaperones, 8, 348–360.CrossRefGoogle Scholar
  75. Gross, C., Hansch, D., Gastpar, R., & Multhoff, G. (2003b). Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biological Chemistry, 384, 267–279.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Guzhova, I., Kislyakova, K., Moskaliova, O., Fridlanskaya, I., Tytell, M., Cheetham, M., & Margulis, B. (2001). In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Research, 914, 66–73.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Hartl, F. U., & Hayer-Hartl, M. (2009). Converging concepts of protein folding in vitro and in vivo. Nature Structural & Molecular Biology, 16, 574–581.CrossRefGoogle Scholar
  78. Heath, W. R., & Carbone, F. R. (2001). Cross-presentation, dendritic cells, tolerance and immunity. Annual Review of Immunology, 19, 47–64.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J., & Sixma, J. J. (1999). Activated platelets release two types of membrane vesicles: Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood, 94, 3791–3799.PubMedPubMedCentralGoogle Scholar
  80. Hightower, L. E., & Guidon, P. T., Jr. (1989). Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. Journal of Cellular Physiology, 138, 257–266.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Hilf, N., Singh-Jasuja, H., Schwarzmaier, P., Gouttefangeas, C., Rammensee, H. G., & Schild, H. (2002). Human platelets express heat shock protein receptors and regulate dendritic cell maturation. Blood, 99, 3676–3682.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Horváth, I., Multhoff, G., Sonnleitner, A., & Vígh, L. (2008). Membrane-associated stress proteins: More than simply chaperones. Biochimica et Biophysica Acta, 1778, 1653–1664.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Hunter-Lavin, C., Davies, E. L., Bacelar, M. M., Marshall, M. J., Andrew, S. M., & Williams, J. H. (2004). Hsp70 release from peripheral blood mononuclear cells. Biochemical and Biophysical Research Communications, 324, 511–517.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Ito, A., Matsuoka, F., Honda, H., & Kobayashi, T. (2004). Atitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Immunology, Immunotherapy, 53, 26–32.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Johnson, J. D., & Fleshner, M. (2006). Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. Journal of Leukocyte Biology, 79, 425–434.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Jones, Q., Voegeli, T. S., Li, G., Chen, Y., & Currie, R. W. (2011). Heat shock proteins protect against ischemia and inflammation through multiple mechanisms. Inflammation Allergy Drug Targets, 10, 247–259.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kampinga, H. H., Henning, R. H., van Gelder, I. C., & Brundel, B. J. (2007). Beat shock proteins and atrial fibrillation. Cell Stress & Chaperones, 12, 97–100.CrossRefGoogle Scholar
  88. Kampinga, H. H., Hageman, J., Vos, M. J., Kubota, H., Tanguay, R. M., Bruford, E. A., Cheetham, M. E., Chen, B., & Hightower, L. E. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones, 14, 105–111.CrossRefGoogle Scholar
  89. Kaur, J., Kaur, J., & Ralhan, R. (2000). Induction of apoptosis by abrogation of HSP70 expression in human oral cancer cells. International Journal of Cancer, 85, 1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Kim, T. K., Na, H. J., Lee, W. R., Jeoung, M. H., & Lee, S. (2016). Heat shock protein 70-1A is a novel angiogenic regulator. Biochemical and Biophysical Research Communications, 469, 222–228.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kocsis, J., Madaras, B., Tóth, E. K., Füst, G., & Prohászka, Z. (2010). Serum level of soluble 70-kD heat shock protein is associated with high mortality in patients with colorectal cancer without distant metastasis. Cell Stress & Chaperones, 15, 143–151.CrossRefGoogle Scholar
  92. Kovalchin, J. T., Wang, R., Wagh, M. S., Azoulay, J., Sanders, M., & Chandawarkar, R. Y. (2006). In vivo delivery of heat shock protein 70 accelerates wound healing by up-regulating macrophage-mediated phagocytosis. Wound Repair and Regeneration, 14, 129–137.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Krause, M., & Rodrigues-Krause, J. C. (2011). Extracellular heat shock proteins (eHSP70) in exercise: Possible targets outside the immune system and their role for neurodegenerative disorders treatment. Medical Hypotheses, 76, 286–290.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Krause, S. W., Gastpar, R., Andreesen, R., Gross, C., Ullrich, H., Thonigs, G., Pfister, K., & Multhoff, G. (2004). Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: A clinical phase I trial. Clinical Cancer Research, 10, 3699–36707.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Kregel, K. C. (2002). Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physics, 92, 2177–2186.CrossRefGoogle Scholar
  96. Kumar, S., Deepak, P., & Acharya, A. (2009). Autologous Hsp70 immunization induces anti-tumor immunity and increases longevity and survival of tumor-bearing mice. Neoplasma, 56, 259–268.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Kuppner, M. C., Gastpar, R., Gelwer, S., Nössner, E., Ochmann, O., Scharner, A., & Issels, R. D. (2001). The role of heat shock protein (hsp70) in dendritic cell maturation: Hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. European Journal of Immunology, 31, 1602–1609.CrossRefPubMedGoogle Scholar
  98. Lancaster, G. I., & Febbraio, M. A. (2005). Exosome-dependent trafficking of HSP70: A novel secretory pathway for cellular stress proteins. The Journal of Biological Chemistry, 280, 23349–23355.CrossRefPubMedGoogle Scholar
  99. Lehner, T., Wang, Y., & Kelly, C. (2003). Heat shock protein receptors, functions and their effect on monocytes and dendritic cells. In W. van Eden & D. B. Young (Eds.), Heat shock proteins and inflammation (pp. 193–198). Basel: Dekker.CrossRefGoogle Scholar
  100. Li, Z., Menoret, A., & Srivastava, P. (2002). Roles of heat-shock proteins in antigen presentation and cross-presentation. Current Opinion in Immunology, 14, 45–51.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Li, D., Romain, G., Flamar, A. L., Duluc, D., Dullaers, M., Li, X. H., Zurawski, S., Bosquet, N., Palucka, A. K., Le Grand, R., O’Garra, A., Zurawski, G., Banchereau, J., & Oh, S. (2012). Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. The Journal of Experimental Medicine, 209, 109–121.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Liberek, K., Lewandowska, A., & Zietkiewicz, S. (2008). Chaperones in control of protein disaggregation. The EMBO Journal, 23, 27328–27335.Google Scholar
  103. Lindquist, S. (1986). The heat-shock response. Annual Review of Biochemistry, 55, 1151–1191.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Lindquist, S., & Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics, 22, 631–677.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Luft, J. C., & Dix, D. J. (1999). Hsp70 expression and function during embryogenesis. Cell Stress & Chaperones, 4, 162–170.CrossRefGoogle Scholar
  106. Lui, J. C., & Kong, S. K. (2007). Heat shock protein 70 inhibits the nuclear import of apoptosis-inducing factor to avoid DNA fragmentation in TF-1 cells during erythropoiesis. FEBS Letters, 581, 109–117.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Lund, B. T., Chakryan, Y., Ashikian, N., Mnatsakanyan, L., Bevan, C. J., Aguilera, R., Gallaher, T., & Jakowec, M. W. (2006). Association of MBP peptides with Hsp70 in normal appearing human white matter. Journal Neurology Science Novel, 249, 122–134.CrossRefGoogle Scholar
  108. Luo, X., Zuo, X., Zhou, Y., Zhang, B., Shi, Y., Liu, M., Wang, K., McMillian, D. R., & Xiao, X. (2008). Extracellular heat shock protein 70 inhibits tumour necrosis factor-alpha induced proinflammatory mediator production in fibroblast-like synoviocytes. Arthritis Research & Therapy, 10, R41.CrossRefGoogle Scholar
  109. Luo, X., Tao, L., Lin, P., Mo, X., & Chen, H. (2012). Extracellular heat shock protein 72 protects schwann cells from hydrogen peroxide-induced apoptosis. Journal of Neuroscience Research, 90, 1261–1269.PubMedCrossRefPubMedCentralGoogle Scholar
  110. MacAry, P. A., Javid, B., Floto, R. A., Smith, K. G., Oehlmann, W., Singh, M., & Lehner, P. J. (2004). HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity, 20, 95–106.CrossRefPubMedGoogle Scholar
  111. Madden, L. A., Sandström, M. E., Lovell, R. J., & McNaughton, L. (2008). Inducible heat shock protein 70 and its role in preconditioning and exercise. Amino Acids, 34, 511–516.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Mambula, S. S., & Calderwood, S. K. (2006). Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. Journal of Immunology, 177, 7849–7857.CrossRefGoogle Scholar
  113. Martin, R., McFarland, H. F., & McFarlin, D. E. (1992). Immunological aspects of demyelinating diseases. Annual Review of Immunology, 10, 153–187.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Martin, C. A., Carsons, S. E., Kowalewski, R., Bernstein, D., Valentino, M., & Santiago-Schwarz, F. (2003). Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp)70 in the rheumatoid joint: Possible mechanisms of hsp/DC-mediated cross-priming. Journal of Immunology, 171, 5736–5742.CrossRefGoogle Scholar
  115. Mathew, A., Bell, A., & Johnstone, R. M. (1995). Hsp-70 is closely associated with the transferrin receptor in exosomes from maturing reticulocytes. The Biochemical Journal, 308, 823–830.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Mathivanan, S., & Simpson, R. J. (2009). ExoCarta: A compendium of exosomal proteins and RNA. Proteomics, 9, 4997–5000.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Mathur, S., Walley, K. R., Wang, Y., Indrambarya, T., & Boyd, J. H. (2011). Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circulation Journal, 75, 2445–2452.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Milani, V., Noessner, E., Ghose, S., Kuppner, M., Ahrens, B., Scharner, A., Gastpar, R., & Issels, R. D. (2002). Heat shock protein 70: Role in antigen presentation and immune stimulation. International Journal of Hyperthermia, 18, 563–575.CrossRefPubMedGoogle Scholar
  119. Milarski, K. L., & Morimoto, R. I. (1989). Mutational analysis of the human HSP70 protein: Distinct domains for nucleolar localization and adenosine triphosphate binding. The Journal of Cell Biology, 109, 1947–1962.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Moore, K. W., de Waal Malefyt, R., Coffman, R. L., & O’Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology, 19, 683–765.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Morimoto, R. I. (1991). Heat shock: The role of transient inducible responses in cell damage, transformation, and differentiation. Cancer Cells, 3, 295–301.PubMedPubMedCentralGoogle Scholar
  122. Morimoto, R. I., Kline, M. P., Bimston, D. N., & Cotto, J. J. (1997). The heat-shock response: Regulation and function of heat-shock proteins and molecular chaperones. Essays in Biochemistry, 32, 17–29.PubMedPubMedCentralGoogle Scholar
  123. Moser, C., Schmidbauer, C., Gürtler, U., Gross, C., Gehrmann, M., Thonigs, G., Pfister, K., & Multhoff, G. (2002). Inhibition of tumor growth in mice with severe combined immunodeficiency is mediated by heat shock protein 70 (Hsp70)-peptide-activated, CD94 positive natural killer cells. Cell Stress & Chaperones, 7, 365–373.CrossRefGoogle Scholar
  124. Muchowski, P. J., & Wacker, J. L. (2005). Modulation of neurodegeneration by molecular chaperones. Nature Reviews. Neuroscience, 6, 11–22.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Multhoff, G., Botzler, C., Jennen, L., Schmidt, J., Ellwart, J., & Issels, R. (1997). Heat shock protein 72 on tumor cells: A recognition structure for natural killer cells. Journal of Immunology, 158, 4341–4350.Google Scholar
  126. Multhoff, G., Botzler, C., & Issels, R. (1998). The role of heat shock proteins in the stimulation of an immune response. Biological Chemistry, 379, 295–300.PubMedPubMedCentralGoogle Scholar
  127. Multhoff, G., Mizzen, L., Winchester, C. C., Milner, C. M., Wenk, S., Eissner, G., Kampinga, H. H., Laumbacher, B., & Johnson, J. (1999). Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Experimental Hematology, 27, 1627–1636.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Multhoff, G., Pfister, K., Gehrmann, M., Hantschel, M., Gross, C., Hafner, M., & Hiddemann, W. (2001). A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress & Chaperones, 6, 337–344.CrossRefGoogle Scholar
  129. Nickel, W., & Seedorf, M. (2008). Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annual Review of Cell and Developmental Biology, 24, 287–308.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Nieland, T. J., Tan, M. C., Monne-van Muijen, M., Koning, F., Kruisbeek, A. M., & van Bleek, G. M. (1996). Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proceedings of the National Academy of Sciences of the United States of America, 93, 6135–6139.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Noble, E. G., Milne, K. J., & Melling, C. W. (2008). Heat shock proteins and exercise: A primer. Applied Physiology, Nutrition, and Metabolism, 33, 1050–1065.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Noessner, E., Gastpar, R., Milani, V., Brandl, A., Hutzler, P. J., Kuppner, M. C., Roos, M., Kremmer, E., Asea, A., Calderwood, S. K., & Issels, R. D. (2002). Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. Journal of Immunology, 169, 5424–5432.CrossRefGoogle Scholar
  133. Novoselova, T. V., Margulis, B. A., Novoselov, S. S., Sapozhnikov, A. M., van der Spuy, J., Cheetham, M. E., & Guzhova, I. V. (2005). Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. Journal of Neurochemistry, 94, 597–606.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Nylandsted, J., Rohde, M., Brand, K., Bastholm, L., Elling, F., & Jäättelä, M. (2000). Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proceedings of the National Academy of Sciences of the United States of America, 97, 7871–7876.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Ortega, E., Giraldo, E., Hinchado, M. D., Martinez, M., Ibanez, S., Cidoncha, A., Collazos, M. E., & Garcia, J. J. (2006). Role of Hsp72 and norepinephrine in the moderate exercise-induced stimulation of neutrophils’ microbicide capacity. European Journal of Applied Physiology, 98, 250–255.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Ortega, E., Hinchado, M. D., Martin-Cordero, L., & Asea, A. (2009). The effect of stress-inducible extracellular Hsp72 on human neutrophil chemotaxis: A role during acute intense exercise. Stress, 12, 240–249.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Panjwani, N. N., Popova, L., & Srivastava, P. K. (2002). Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. Journal of Immunology, 168, 2997–3003.CrossRefGoogle Scholar
  138. Park, C. J., Park, S. A., Yoon, T. G., Lee, S. J., Yum, K. W., & Kim, H. J. (2005). Bupivacaine induces apoptosis via ROS in the Schwann cell line. Journal of Dental Research, 84, 852–857.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Patel, B., Khaliq, A., Jarvis-Evans, J., Boulton, M., Arrol, S., Mackness, M., & McLeod, D. (1995). Hypoxia induces HSP 70 gene expression in human hepatoma (HEP G2) cells. Biochemistry and Molecular Biology International, 36, 907–912.PubMedPubMedCentralGoogle Scholar
  140. Pawaria, S., & Binder, R. J. (2011). CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nature Communications, 2, 1–11.CrossRefGoogle Scholar
  141. Pierzchalski, P., Jastrzebska, M., Link-Lenczowski, P., Leja-Szpak, A., Bonior, J., Jaworek, J., Okon, K., & Wojcik, P. (2014). The dynamics of heat shock system activation in Monomac-6 cells upon Helicobacter pylori infection. Journal of Physiology and Pharmacology, 65, 791–800.PubMedPubMedCentralGoogle Scholar
  142. Planas, A. M., Soriano, M. A., Estrada, A., Sanz, O., Martin, F., & Ferrer, I. (1997). The heat shock stress response after brain lesions: Induction of 72 kDa heat shock protein (cell types involved, axonal transport, transcriptional regulation) and protein synthesis inhibition. Progress in Neurobiology, 51, 607–636.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Pockley, A. G., Shepherd, J., & Corton, J. M. (1998). Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunological Investigations, 27, 367–377.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Pockley, A. G., De Faire, U., Kiessling, R., Lemne, C., Thulin, T., & Frostegård, J. (2002). Circulating heat shock protein and heat shock antibody levels in established hypertension. Journal of Hypertension, 20, 1815–1820.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Pockley, A. G., Georgiades, A., Thulin, T., de Faire, U., & Frostegård, J. (2003). Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension, 42, 235–238.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Prakken, B. J., Wendling, U., van der Zee, R., Rutten, V. P., Kuis, W., & van Eden, W. (2001). Induction of IL-10 and inhibition of experimental arthritis are specific features of microbial heat shock proteins that are absent for other evolutionarily conserved immunodominant proteins. Journal of Immunology, 167, 4147–4153.CrossRefGoogle Scholar
  147. Qiao, Y., Liu, B., & Li, Z. (2008). Activation of NK cells by extracellular heat shock protein 70 through induction of NKG2D ligands on dendritic cells. Cancer Immunity, 10(8), 12.Google Scholar
  148. Radsak, M. P., Hilf, N., Singh-Jasuja, H., Braedel, S., Brossart, P., Rammensee, H. G., & Schild, H. (2003). The heat shock protein gp96 binds to human neutrophils and monocytes and stimulates effector functions. Blood, 101, 2810–2281.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Richard, V., Kaeffer, N., & Thuillez, C. (1996). Delayed protection of the ischemic heart from pathophysiology to therapeutic applications. Fundamental & Clinical Pharmacology, 10, 409–415.CrossRefGoogle Scholar
  150. Ries, C., Egea, V., Karow, M., Kolb, H., Jochum, M., & Neth, P. (2007). MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: Differential regulation by inflammatory cytokines. Blood, 109, 4055–4063.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Robinson, M. B., Tidwell, J. L., Gould, T., Taylor, A. R., Newbern, J. M., Graves, J., Tytell, M., & Milligan, C. E. (2005). Extracellular heat shock protein 70: A critical component for motoneuron survival. The Journal of Neuroscience, 25, 9735–9745.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Robinson, M. B., Taylor, A. R., Gifondorwa, D. J., Tytell, M., & Milligan, C. E. (2008). Exogenous Hsc70, but not thermal preconditioning, confers protection to motoneurons subjected to oxidative stress. Developmental Neurobiology, 68, 1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Rodrigues-Krause, J., Krause, M., O’Hagan, C., De Vito, G., Boreham, C., Murphy, C., Newsholme, P., & Colleran, G. (2012). Divergence of intracellular and extracellular HSP72 in type 2 diabetes: Does fat matter? Cell Stress & Chaperones, 17, 293–302.CrossRefGoogle Scholar
  154. Said Ali, K., Ferencz, A., Nemcsok, J., & Hermesz, E. (2010). Expressions of heat shock and metallothionein genes in the heart of common carp (Cyprinus carpio): Effects of temperature shock and heavy metal exposure. Acta Biologica Hungarica, 61, 10–23.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Saito, K., Dai, Y., & Ohtsuka, K. (2005). Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Experimental Cell Research, 310, 229–236.PubMedCrossRefGoogle Scholar
  156. Schild, H., Arnold-Schild, D., Lammert, E., & Rammensee, H. G. (1999). Stress proteins and immunity mediated by cytotoxic T lymphocytes. Current Opinion in Immunology, 11, 109–113.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Sharp, F. R., Massa, S. M., & Swanson, R. A. (1999). Heat-shock protein protection. Trends in Neurosciences, 22, 97–99.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Shevchenko, M. A., Troyanova, N. I., Servuli, E. A., Bolkhovitina, E. L., Fedorina, A. S., & Sapozhnikov, A. M. (2016). Study of immunomodulatory effects of extracellular HSP70 in a mouse model of allergic airway inflammation. Biochemistry (Mosc), 81, 1384–1395.CrossRefGoogle Scholar
  159. Somensi, N., Brum, P. O., de Miranda Ramos, V., Gasparotto, J., Zanotto-Filho, A., Rostirolla, D. C., da Silva Morrone, M., Moreira, J. C. F., & Pens Gelain, D. (2017). Extracellular HSP70 activates ERK1/2, NF-kB and pro-inflammatory gene transcription through binding with RAGE in A549 human lung cancer cells. Cellular Physiology and Biochemistry, 42, 2507–2522.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Specht, H. M., Ahrens, N., Blankenstein, C., Duell, T., Fietkau, R., Gaipl, U. S., Günther, C., Gunther, S., Habl, G., Hautmann, H., Hautmann, M., Huber, R. M., Molls, M., Offner, R., Rödel, C., Rödel, F., Schütz, M., Combs, S. E., & Multhoff, G. (2015). Heat shock protein 70 (Hsp70) peptide activated natural killer (NK) cells for the treatment of patients with non-small cell lung cancer (NSCLC) after radiochemotherapy (RCTx) – from preclinical studies to a clinical phase II trial. Frontiers in Immunology, 6, 1–9.CrossRefGoogle Scholar
  161. Sprang, G. K., & Brown, I. R. (1987). Selective induction of a heat shock gene in fibre tracts and cerebellar neurons of the rabbit brain detected by in situ hybridization. Brain Research, 427, 89–93.PubMedPubMedCentralGoogle Scholar
  162. Srivastava, P. (2002). Roles of heat-shock proteins in innate and adaptive immunity. Nature Reviews. Immunology, 2, 185–194.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Stadelmann, C., Ludwin, S., Tabira, T., Guseo, A., Lucchinetti, C. F., Leel-Ossy, L., Ordinario, A. T., Brück, W., & Lassmann, H. (2005). Tissue preconditioning may explain concentric lesions in Balo’s type of multiple sclerosis. Brain, 128, 979–987.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Stangl, S., Wortmann, A., Guertler, U., & Multhoff, G. (2006). Control of metastasized pancreatic carcinomas in SCID/beige mice with human IL-2/TKD-activated NK cells. Journal of Immunology, 176, 6270–6276.CrossRefGoogle Scholar
  165. Stangl, S., Themelis, G., Friedrich, L., Ntziachristos, V., Sarantopoulos, A., Molls, M., Skerra, A., & Multhoff, G. (2011). Detection of irradiation-induced, membrane heat shock protein 70 (Hsp70) in mouse tumors using Hsp70 Fab fragment. Radiotherapy and Oncology, 99, 313–316.PubMedCrossRefGoogle Scholar
  166. Stocki, P., & Dickinson, A. M. (2012). The immunosuppressive activity of heat shock protein70. Autoimmune Disease, 2012, 1–6.CrossRefGoogle Scholar
  167. Suto, R., & Srivastava, P. K. (1995). A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science, 269, 1585–1588.CrossRefPubMedGoogle Scholar
  168. Svensson, P. A., Asea, A., Englund, M. C., Bausero, M. A., Jernås, M., Wiklund, O., Ohlsson, B. G., Carlsson, L. M., & Carlsson, B. (2006). Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages. Atherosclerosis, 185, 32–38.PubMedCrossRefGoogle Scholar
  169. Takeda, K., & Akira, S. (2004). TLR signaling pathways. Seminars in Immunology, 16, 3–9.PubMedCrossRefGoogle Scholar
  170. Tamura, Y., Peng, P., Liu, K., Daou, M., & Srivastava, P. K. (1997). Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science, 278, 117–120.CrossRefPubMedGoogle Scholar
  171. Tanaka, S., Kimura, Y., Mitani, A., Yamamoto, G., Nishimura, H., Spallek, R., Singh, M., Noguchi, T., & Yoshikai, Y. (1999). Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. Journal of Immunology, 163, 5560–55605.Google Scholar
  172. Taylor, A. R., Robinson, M. B., Gifondorwa, D. J., Tytell, M., & Milligan, C. E. (2007). Regulation of heat shock protein 70 release in astrocytes: Role of signaling kinases. Developmental Neurobiology, 67, 1815–1829.PubMedCrossRefGoogle Scholar
  173. Thériault, J. R., Adachi, H., & Calderwood, S. K. (2006). Role of scavenger receptors in the binding and internalization of heat shock protein 70. Journal of Immunology, 177, 8604–8611.CrossRefGoogle Scholar
  174. Théry, C. (2011). Exosomes: Secreted vesicles and intercellular communications. F1000 Biology Reports, 3, 1–8.CrossRefGoogle Scholar
  175. Théry, C., Regnault, A., Garin, J., Wolfers, J., Zitvogel, L., Ricciardi-Castagnoli, P., Raposo, G., & Amigorena, S. (1999). Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. The Journal of Cell Biology, 147, 599–610.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Tidwell, J. L., Houenou, L. J., & Tytell, M. (2004). Administration of Hsp70 in vivo inhibits motor and sensory neuron de generation. Cell Stress and Chaperones, 9, 88–98.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Tobian, A. A., Canaday, D. H., Boom, W. H., & Harding, C. V. (2004). Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. Journal of Immunology, 172, 5277–5286.CrossRefGoogle Scholar
  178. Triantafilou, M., Miyake, K., Golenbock, D. T., & Triantafilou, K. (2002). Mediators of innate immune recognition of bacteria concentrate in lipids rafts and facilitate lipopolysaccharide-induced cell activation. Journal of Cell Science, 115, 2603–2611.PubMedPubMedCentralGoogle Scholar
  179. Tsan, M. F., & Gao, B. (2009). Heat shock proteins and immune system. Journal of Leukocyte Biology, 85, 905–910.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Turturici, G., Sconzo, G., & Geraci, F. (2011). Hsp70 and its molecular role in nervous system diseases. Biochemistry Research International, 2011, 1–18.CrossRefGoogle Scholar
  181. Turturici, G., Tinnirello, R., Sconzo, G., Asea, A., Savettieri, G., Ragonese, P., & Geraci, F. (2014). Positive or negative involvement of heat shock proteins in multiple sclerosis pathogenesis: An overview. Journal of Neuropathology and Experimental Neurology, 73, 1092–1106.PubMedCrossRefPubMedCentralGoogle Scholar
  182. Tytell, M. (2005). Release of heat shock proteins (HSP) and the effects of extracellular HSP on neural cells and tissues. International Journal of Hyperthermia, 21, 445–455.PubMedCrossRefPubMedCentralGoogle Scholar
  183. Tytell, M., Greenberg, S. G., & Lasek, R. J. (1986). Heat shock-like protein is transferred from glia to axon. Brain Research, 363, 161–164.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Vabulas, R. M., Ahmad-Nejad, P., Ghose, S., Kirschning, C., Issels, R., & Wagner, H. (2002a). HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. The Journal of Biological Chemistry, 277, 15107–15112.CrossRefPubMedGoogle Scholar
  185. Vabulas, R. M., Wagner, H., & Schild, H. (2002b). Heat shock proteins as ligands of toll-like receptors. Current Topics in Microbiology and Immunology, 270, 169–184.PubMedPubMedCentralGoogle Scholar
  186. Vega, V. L., Rodriguez-Silva, M., Frey, T., Gehrmann, M., Diaz, J. C., Steinem, C., Multhoff, G., Arispe, N., & De Maio, A. (2008). Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. Journal of Immunology, 180, 4299–4307.CrossRefGoogle Scholar
  187. Voellmy, R. (2004). On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress & Chaperones, 9, 122–133.CrossRefGoogle Scholar
  188. Voos, W. (2013). Chaperone-protease networks in mitochondrial protein homeostasis. Biochimica et Biophysica Acta, 1833, 388–399.PubMedCrossRefPubMedCentralGoogle Scholar
  189. Wang, Y., Kelly, C. G., Karttunen, J. T., Whittall, T., Lehner, P. J., Duncan, L., MacAry, P., Younson, J. S., Singh, M., Oehlmann, W., Cheng, G., Bergmeier, L., & Lehner, T. (2001). CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity, 15, 971–983.CrossRefPubMedGoogle Scholar
  190. Wang, Y., Whittall, T., McGowan, E., Younson, J., Kelly, C., Bergmeier, L. A., Singh, M., & Lehner, T. (2005). Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. Journal of Immunology, 174, 3306–3316.CrossRefGoogle Scholar
  191. Wang, R., Kovalchin, J. T., Muhlenkamp, P., & Chandawarkar, R. Y. (2006a). Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood, 107, 1636–1642.CrossRefPubMedGoogle Scholar
  192. Wang, R., Town, T., Gokarn, V., Flavell, R. A., & Chandawarkar, R. Y. (2006b). HSP70 enhances macrophage phagocytosis by interaction with lipid raft-associated TLR-7 and upregulating p38 MAPK and PI3K pathways. The Journal of Surgical Research, 136, 58–69.PubMedCrossRefPubMedCentralGoogle Scholar
  193. Wei, Y. Q., Zhao, X., Kariya, Y., Teshigawara, K., & Uchida, A. (1995). Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells. Cancer Immunology, Immunotherapy, 40, 73–78.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Wendling, U., Paul, L., van der Zee, R., Prakken, B., Singh, M., & van Eden, W. (2000). A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. Journal of Immunology, 164, 2711–2717.CrossRefGoogle Scholar
  195. Wieten, L., Broere, F., van der Zee, R., Koerkamp, E. K., Wagenaar, J., & van Eden, W. (2007). Cell stress induced HSP are targets of regulatory T cells: A role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Letters, 581, 3716–3722.PubMedCrossRefPubMedCentralGoogle Scholar
  196. Wu, B., Hunt, C., & Morimoto, R. (1985). Structure and expression of the human gene encoding major heat shock protein HSP70. Molecular and Cell Biology, 5, 330–341.CrossRefGoogle Scholar
  197. Wu, F. H., Yuan, Y., Li, D., Liao, S. J., Yan, B., Wei, J. J., Zhou, Y. H., Zhu, J. H., Zhang, G. M., & Feng, Z. H. (2012). Extracellular HSPA1A promotes the growth of hepatocarcinoma by augmenting tumor cell proliferation and apoptosis-resistance. Cancer Letters, 317, 157–164.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Xie, J., Méndez, J. D., Méndez-Valenzuela, V., & Aguilar-Hernández, M. M. (2013). Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular Signalling, 25, 2185–2197.PubMedCrossRefPubMedCentralGoogle Scholar
  199. Yang, X. M., Baxter, G. F., Heads, R. J., Yellon, D. M., Downey, J. M., & Cohen, M. V. (1996). Infarct limitation of the second window of protection in a conscious rabbit model. Cardiovascular Research, 31, 777–783.PubMedCrossRefPubMedCentralGoogle Scholar
  200. Yang, X., Coriolan, D., Murthy, V., Schultz, K., Golenbock, D. T., & Beasley, D. (2005). Proinflammatory phenotype of vascular smooth muscle cells: Role of efficient Toll-like receptor 4 signaling. American Journal of Physiology. Heart and Circulatory Physiology, 289, H1069–H1076.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Yeh, C. H., Tseng, R., Zhang, Z., Cortes, J., O’Brien, S., Giles, F., Hannah, A., Estrov, Z., Keating, M., Kantarjian, H., & Albitar, M. (2009). Circulating heat shock protein 70 and progression in patients with chronic myeloid leukemia. Leukemia Research, 33, 212–217.CrossRefPubMedGoogle Scholar
  202. Yeh, C. H., Tseng, R., Hannah, A., Estrov, Z., Estey, E., Kantarjian, H., & Albitar, M. (2010). Clinical correlation of circulating heat shock protein 70 in acute leukemia. Leukemia Research, 34, 605–609.PubMedCrossRefPubMedCentralGoogle Scholar
  203. Yokota, S., Chiba, S., Furuyama, H., & Fujii, N. (2010). Cerebrospinal fluids containing anti-HSP70 autoantibodies from multiple sclerosis patients augment HSP70-induced proinflammatory cytokine production in monocytic cells. Journal of Neuroimmunology, 218, 129–133.PubMedCrossRefPubMedCentralGoogle Scholar
  204. Zhan, R., Leng, X., Liu, X., Wang, X., Gong, J., Yan, L., Wang, L., Wang, Y., Wang, X., & Qian, L. J. (2009). Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes. Biochemical and Biophysical Research Communications, 387, 229–233.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Zhe, Y., Li, Y., Liu, D., Su, D. M., Liu, J. G., & Li, H. Y. (2016). Extracellular HSP70-peptide complexes promote the proliferation of hepatocellular carcinoma cells via TLR2/4/JNK1/2MAPK pathway. Tumour Biology, 37, 13951–13959.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., & Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 272, 1606–1614.PubMedPubMedCentralCrossRefGoogle Scholar
  207. Zügel, U., Sponaas, A. M., Neckermann, J., Schoel, B., & Kaufmann, S. H. (2001). Gp96-peptide vaccination of mice against intracellular bacteria. Infection and Immunity, 69, 4164–4167.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of PalermoPalermoItaly
  2. 2.Euro-Mediterranean Institute of Science and TechnologyPalermoItaly

Personalised recommendations