Implication of HSP70 in the Pathogenesis of Gastric Cancer

  • Prakash Chand Sharma
  • Renu Verma
Part of the Heat Shock Proteins book series (HESP, volume 14)


Gastric cancer is the third most common cause of cancer linked mortality in the world. Despite recent advances in treatment regimes, effective prognosis and diagnosis of GC is still a formidable task as the disease is asymptomatic in early stages. Heat Shock Proteins (HSP) constitute a class of ubiquitous and highly conserved proteins that show differential expression during different stresses including cancer. HSP70, an important member of the HSP family, regulate various biological processes like protein folding and degradation, apoptosis, and angiogenesis related with tumorigenesis. Differential expression of HSP70 has been explored in tumor versus normal tissues. Upregualtion of HSP70 has been validated in advanced stages making it a future potential prognostic marker in GC. Infection with Helicobacter pylori, a major causative agent of GC, is known to communicate with HSP70 and downregulate its expression. Genetic polymorphism has been correlated with susceptibility to many diseases and association of HSP70 polymorphism in GC is no exception. This chapter deals with various functional roles of HSP70 and its implication in tumorigenesis, particularly gastric cancer.


Angiogenesis Apoptosis Gastric cancer Helicobacter pylori HSP70 Protein folding and degradation 



gastric cancer

H. pylori

Helicobacter pylori


heat shock factor


heat shock proteins




kilo dalton


real time – polymerase chain reaction


small heat shock proteins



PCS acknowledges a faculty research grant and RV acknowledges short term research fellowship of Guru Gobind Singh Indraprastha University, Delhi.


  1. Abd, E. A. H., Rey, A., & Duvillard, P. (1998). Expression of heat shock protein 70 and c-myc in cervical carcinoma. Anticancer Research, 18, 1533–1536.Google Scholar
  2. Aquino-Gálvez, A., González-Ávila, G., Pérez-Rodríguez, M., Partida-Rodríguez, O., Nieves-Ramírez, M., Piña-Ramírez, I., Ramírez-Martínez, G., Castillejos-López, M., Checa, M., Ruiz, V., & Urrea, F. (2015). Analysis of heat shock protein 70 gene polymorphisms in Mexican patients with idiopathic pulmonary fibrosis. BMC Pulmonary Medicine, 15, 129–136.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bercovich, B., Stancovski, I., Mayer, A., Blumenfeld, N., Laszlo, A., Schwartz, A. L., & Ciechanover, A. (1997). Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. The Journal of Biological Chemistry, 272, 9002–9010.CrossRefPubMedGoogle Scholar
  4. Bodoor, K., Jalboush, S. A., Matalka, I., Abu-Sheikha, A., Al Waqfi, R., Ebwaini, H., Abu-Awad, A., Fayyad, L., Al-Arjat, J., & Haddad, Y. (2016). Heat shock protein association with clinico-pathological characteristics of gastric cancer in Jordan: HSP70 is predictive of poor prognosis. Asian Pacific Journal of Cancer Prevention, 17, 3927–3935.Google Scholar
  5. Bonay, M., Soler, P., Riquet, M., Battesti, J. P., Hance, A. J., & Tazi, A. (1994). Expression of heat shock proteins in human lung and lung cancers. American Journal of Respiratory Cell and Molecular Biology, 10, 453–461.CrossRefPubMedGoogle Scholar
  6. Brown, L. M. (2000). Helicobacter pylori: Epidemiology and routes of transmission. Epidemiologic Reviews, 22, 283–297.CrossRefPubMedGoogle Scholar
  7. Bruey, J. M., Ducasse, C., Bonniaud, P., Ravagnan, L., Susin, S. A., Diaz-Latoud, C., Gurbuxani, S., Arrigo, A. P., Kroemer, G., Solary, E., & Garrido, C. (2000). Hsp27 negatively regulates cell death by interacting with cytochrome c. Nature Cell Biology, 2, 645–652.CrossRefPubMedGoogle Scholar
  8. Calderwood, S. K., Khaleque, M. A., Sawyer, D. B., & Ciocca, D. R. (2006). Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends in Biochemical Sciences, 31, 164–172.CrossRefPubMedGoogle Scholar
  9. Cancer Genome Atlas Research Network. (2014). Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 513, 202–209.CrossRefGoogle Scholar
  10. Canöz, Ö., Belenli, O., & Patiroglu, T. E. (2002). General features of gastric carcinomas and comparison of HSP70 and NK cell immunoreactivity with prognostic factors. Pathology Oncology Research, 8, 262–269.CrossRefPubMedGoogle Scholar
  11. Castelli, C., Rivoltini, L., Rini, F., Belli, F., Testori, A., Maio, M., Mazzaferro, V., Coppa, J., Srivastava, P. K., & Parmiani, G. (2004). Heat shock proteins: Biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunology, Immunotherapy, 53, 227–233.CrossRefPubMedGoogle Scholar
  12. Castilla, C., Congregado, B., Conde, J. M., Medina, R., Torrubia, F. J., Japón, M. A., & Sáez, C. (2010). Immunohistochemical expression of Hsp60 correlates with tumor progression and hormone resistance in prostate cancer. Urology, 76, 1017e1–1017e6.CrossRefGoogle Scholar
  13. Ciocca, D. R., & Calderwood, S. K. (2005). Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 10, 86–103.CrossRefGoogle Scholar
  14. Ciocca, D. R., Stati, A. O., & de Castro, M. M. A. (1990). Colocalization of estrogen and progesterone receptors with an estrogen regulated heat shock protein in paraffin sections of human breast and endometrial cancer tissue. Breast Cancer Research and Treatment, 16, 243–251.CrossRefPubMedGoogle Scholar
  15. Ciocca, D. R., Clark, G. M., Tandon, A. K., Fuqua, S. A., Welch, W. J., & McGuire, W. L. (1993). Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: Prognostic implications. Journal of the National Cancer Institute, 85, 570–574.CrossRefPubMedGoogle Scholar
  16. Didelot, C., Lanneau, D., Brunet, M., Joly, A. L., Thonel, A. D., Chiosis, G., & Garrido, C. (2007). Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Current Medicinal Chemistry, 14, 2839–2847.CrossRefPubMedGoogle Scholar
  17. Elpek, G. O., Karaveli, S., Simsek, T., Keles, N., & Aksoy, N. H. (2003). Expression of heat-shock proteins hsp27, hsp70 and hsp90 in malignant epithelial tumour of the ovaries. APMIS, 111, 523–530.CrossRefPubMedGoogle Scholar
  18. Feldman, D. E., Spiess, C., Howard, D. E., & Frydman, J. (2003). Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding. Molecular Cell, 12, 1213–1224.CrossRefPubMedGoogle Scholar
  19. Feng, H., Zeng, Y., Whitesell, L., & Katsanis, E. (2001). Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood, 97, 3505–3512.CrossRefPubMedGoogle Scholar
  20. Ferrer-Ferrer, M., Malespín-Bendaña, W., Ramírez, V., González, M. I., Carvajal, A., & Une, C. (2013). Polymorphisms in genes coding for HSP-70 are associated with gastric cancer and duodenal ulcer in a population at high risk of gastric cancer in Costa Rica. Archives of Medical Research, 44, 467–474.CrossRefPubMedGoogle Scholar
  21. Gallucci, S., & Matzinger, P. (2001). Danger signals: SOS to the immune system. Current Opinion in Immunology, 13, 114–119.CrossRefPubMedGoogle Scholar
  22. Gehrmann, M., Schmetzer, H., Eissner, G., Haferlach, T., Hiddemann, W., & Multhoff, G. (2003). Membrane-bound heat shock protein 70 in acute myeloid leukemia: A tumor-specific recognition structure for the cytolytic activity of autologous natural killer cells. Haematologica, 88, 474–476.PubMedGoogle Scholar
  23. Glaessgen, A., Jonmarker, S., Lindberg, A., Nilsson, B. O., Lewensohn, R., Ekman, P., Valdman, A., & Egevad, L. (2008). Heat shock proteins 27, 60 and 70 as prognostic markers of prostate cancer. APMIS, 116, 888–895.CrossRefPubMedGoogle Scholar
  24. Graner, M., Raymond, A., Romney, D., He, L., Whitesell, L., & Katsanis, E. (2000). Immunoprotective activities of multiple chaperone proteins isolated from murine B-cell leukemia/lymphoma. Clinical Cancer Research, 6, 909–915.PubMedGoogle Scholar
  25. Graner, M. W., Zeng, Y., Feng, H., & Katsanis, E. (2003). Tumor-derived chaperone-rich cell lysates are effective therapeutic vaccines against a variety of cancers. Cancer Immunology, Immunotherapy, 52, 226–234.PubMedGoogle Scholar
  26. Grave, E., Yokota, S. I., Yamamoto, S., Tamura, A., Ohtaki-Mizoguchi, T., Yokota, K., Oguma, K., Fujiwara, K., Ogawa, N., Okamoto, T., & Otaka, M. (2015). Geranylgeranylacetone selectively binds to the HSP70 of Helicobacter pylori and alters its coccoid morphology. Scientific Reports, 5, 13738.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gress, T. M., Müller-Pillasch, F., Weber, C., Lerch, M. M., Friess, H., Büchler, M., Beger, H. G., & Adler, G. (1994). Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Research, 54, 547–551.PubMedGoogle Scholar
  28. Guzhova, I. V., & Margulis, B. A. (2016). HSP70-based anti-cancer immunotherapy. Human Vaccines & Immunotherapeutics, 12, 2529–2535.CrossRefGoogle Scholar
  29. Hartl, F. U. (1996). Molecular chaperones in cellular protein folding. Nature, 381, 571.CrossRefPubMedGoogle Scholar
  30. Hartl, F. U., Martin, J., & Neupert, W. (1992). Protein folding in the cell: The role of molecular chaperones Hsp70 and Hsp60. Annual Review of Biophysics and Biomolecular Structure, 21, 293–322.CrossRefPubMedGoogle Scholar
  31. Hendrick, J. P., & Hartl, F. U. (1993). Molecular chaperone functions of heat-shock proteins. Annual Review of Biochemistry, 62, 349–384.CrossRefPubMedGoogle Scholar
  32. Hinds, P. W., Finlay, C. A., Frey, A. B., & Levine, A. J. (1987). Immunological evidence for the association of p53 with a heat shock protein, hsc70, in p53-plus-ras-transformed cell lines. Molecular and Cellular Biology, 7, 2863–2869.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hoang, A. T., Huang, J., Rudra-Ganguly, N., Zheng, J., Powell, W. C., Rabindran, S. K., Wu, C., & Roy-Burman, P. (2000). A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. The American Journal of Pathology, 156, 857–864.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hoffman, P. S., & d Garduno, R. A. (1999). Surface-associated heat shock proteins of Legionella pneumophila and Helicobacter pylori: Roles in pathogenesis and immunity. Infectious Diseases in Obstetrics and Gynecology, 7, 58–63.PubMedPubMedCentralGoogle Scholar
  35. Isomoto, H., Oka, M., Yano, Y., Kanazawa, Y., Soda, H., Terada, R., Yasutake, T., Nakayama, T., Shikuwa, S., Takeshima, F., & Udono, H. (2003). Expression of heat shock protein (Hsp) 70 and Hsp 40 in gastric cancer. Cancer Letters, 198, 219–228.CrossRefPubMedGoogle Scholar
  36. Janetzki, S., Palla, D., Rosenhauer, V., Lochs, H., Lewis, J. J., & Srivastava, P. K. (2000). Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: A pilot study. International Journal of Cancer, 88, 232–238.CrossRefPubMedGoogle Scholar
  37. Jindal, S. (1996). Heat shock proteins: Applications in health and disease. Trends in Biotechnology, 14, 17–20.CrossRefPubMedGoogle Scholar
  38. Juhasz, K., Lipp, A. M., Nimmervoll, B., Sonnleitner, A., Hesse, J., Haselgruebler, T., & Balogi, Z. (2014). The complex function of hsp70 in metastatic cancer. Cancer, 6, 42–66.CrossRefGoogle Scholar
  39. Kapoor, C., & Vaidya, S. (2013). Heat shock protein (HSP) and cancer: An overview. American Journal of Medical Dental Sciences, 1, 31–34.Google Scholar
  40. Kaur, J., Das, S. N., Srivastava, A., & Ralhan, R. (1998). Cell surface expression of 70 kDa heat shock protein in human oral dysplasia and squamous cell carcinoma: Correlation with clinicopathological features. Oral Oncology, 34, 93–98.CrossRefPubMedGoogle Scholar
  41. Kaur, J., Kaur, J., & Ralhan, R. (2000). Induction of apoptosis by abrogation of HSP70 expression in human oral cancer cells. International Journal of Cancer, 85, 1–5.CrossRefPubMedGoogle Scholar
  42. Khalil, A. A., Kabapy, N. F., Deraz, S. F., & Smith, C. (2011). Heat shock proteins in oncology: Diagnostic biomarkers or therapeutic targets? Biochimica et Biophysica Acta, 1816, 89–104.PubMedGoogle Scholar
  43. Kim, H. J., Eun, J. Y., Jeon, Y. W., Yun, J., Kim, K. H., Kim, S. H., Kim, H. J., Lee, S. C., Bae, S. B., Kim, C. K., & Lee, N. S. (2011). Efficacy and safety of oxaliplatin, 5-fluorouracil, and folinic acid combination chemotherapy as first-line treatment in metastatic or recurrent gastric cancer. Cancer Research and Treatment, 43, 154–159.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kim, T. K., Na, H. J., Lee, W. R., Jeoung, M. H., & Lee, S. (2016). Heat shock protein 70-1A is a novel angiogenic regulator. Biochemical and Biophysical Research Communications, 469, 222–228.CrossRefPubMedGoogle Scholar
  45. Kusters, J. G., van Vliet, A. H., & Kuipers, E. J. (2006). Pathogenesis of Helicobacter pylori infection. Clinical Microbiology Reviews, 19, 449–490.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lazaris, A. C., Theodoropoulos, G. E., Davaris, P. S., Panoussopoulos, D., Nakopoulou, L., Kittas, C., & Golematis, B. C. (1995). Heat shock protein 70 and HLA-DR molecules tissue expression. Diseases of the Colon and Rectum, 38, 739–745.CrossRefPubMedGoogle Scholar
  47. Lee, H. W., Lee, E. H., Kim, S. H., Roh, M. S., Jung, S. B., & Choi, Y. C. (2013). Heat shock protein 70 (HSP70) expression is associated with poor prognosis in intestinal type gastric cancer. Virchows Archiv, 463, 489–495.CrossRefPubMedGoogle Scholar
  48. Liu, H., Lu, J., Hua, Y., Zhang, P., Liang, Z., Ruan, L., Lian, C., Shi, H., Chen, K., & Tu, Z. (2015). Targeting heat-shock protein 90 with ganetespib for molecularly targeted therapy of gastric cancer. Cell Death & Disease, 6, e1595.CrossRefGoogle Scholar
  49. Macario, A. J., Cappello, F., Zummo, G., & Conway de Macario, E. (2010). Chaperonopathies of senescence and the scrambling of interactions between the chaperoning and the immune systems. Annals of the New York Academy of Sciences, 1197, 85–93.CrossRefPubMedGoogle Scholar
  50. Maehara, Y., Oki, E., Abe, T., Tokunaga, E., Shibahara, K., Kakeji, Y., & Sugimachi, K. (2000). Overexpression of the heat shock protein HSP70 family and p53 protein and prognosis for patients with gastric cancer. Oncology, 58, 144–151.CrossRefPubMedGoogle Scholar
  51. Manjili, M. H., Wang, X. Y., Park, J., Facciponte, J. G., Repasky, E. A., & Subjeck, J. R. (2002). Immunotherapy of cancer using heat shock proteins. Frontiers in Bioscience, 7, 43–52.CrossRefGoogle Scholar
  52. Mayer, M. P., & Bukau, B. (2005). Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences, 62, 670–684.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Melville, M. W., McClellan, A. J., Meyer, A. S., Darveau, A., & Frydman, J. (2003). The Hsp70 and TRiC/CCT chaperone systems cooperate in vivo to assemble the von Hippel-Lindau tumor suppressor complex. Molecular and Cellular Biology, 23, 3141–3151.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Multhoff, G., Botzler, C., Wiesnet, M., Müller, E., Meier, T., Wilmanns, W., & Issels, R. D. (1995). A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. International Journal of Cancer, 61, 272–279.CrossRefPubMedGoogle Scholar
  55. Murphy, M. E. (2013). The HSP70 family and cancer. Carcinogenesis, 34, 1181–1188.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nanbu, K., Konishi, I., Komatsu, T., Mandai, M., Yamamoto, S., Kuroda, H., Koshiyama, M., & Mori, T. (1996). Expression of heat shock proteins HSP70 and HSP90 in endometrial carcinomas: Correlation with clinicopathology, sex steroid receptor status, and p53 protein expression. Cancer, 77, 330–338.CrossRefPubMedGoogle Scholar
  57. Neckers, L., & Workman, P. (2012). Hsp90 molecular chaperone inhibitors: Are we there yet? Clinical Cancer Research, 18, 64–76.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nollen, E. A., & Morimoto, R. I. (2002). Chaperoning signaling pathways: Molecular chaperones as stress-sensing heat shock proteins. Journal of Cell Science, 115, 2809–2816.PubMedGoogle Scholar
  59. Park, S. L., Chung, T. W., Kim, S., Hwang, B., Kim, J. M., Lee, H. M., Cha, H. J., Seo, Y., Choe, S. Y., Ha, K. T., & Kim, G. (2017). HSP70-1 is required for interleukin-5-induced angiogenic responses through eNOS pathway. Scientific Reports, 7, 44687.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Partida-Rodríguez, O., Torres, J., Flores-Luna, L., Camorlinga, M., Nieves-Ramírez, M., Lazcano, E., & Perez-Rodríguez, M. (2010). Polymorphisms in TNF and HSP-70 show a significant association with gastric cancer and duodenal ulcer. International Journal of Cancer, 126, 1861–1868.CrossRefPubMedGoogle Scholar
  61. Pfister, K., Radons, J., Busch, R., Tidball, J. G., Pfeifer, M., Freitag, L., Feldmann, H. J., Milani, V., Issels, R., & Multhoff, G. (2007). Patient survival by Hsp70 membrane phenotype. Cancer, 110, 926–935.CrossRefPubMedGoogle Scholar
  62. Pockley, A. G. (2003). Heat shock proteins as regulators of the immune response. Lancet, 362, 469–476.CrossRefPubMedGoogle Scholar
  63. Pratt, W. B. (1993). The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. The Journal of Biological Chemistry, 268, 21455–21455.PubMedGoogle Scholar
  64. Ranford, J. C., & Henderson, B. (2002). Chaperonins in disease: Mechanisms, models, and treatments. Molecular Pathology, 55, 209–213.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Salvador, N., Aguado, C., Horst, M., & Knecht, E. (2000). Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. The Journal of Biological Chemistry, 275, 27447–27456.PubMedGoogle Scholar
  66. Samali, A., & Cotter, T. G. (1996). Heat shock proteins increase resistance to apoptosis. Experimental Cell Research, 223, 163–170.CrossRefPubMedGoogle Scholar
  67. Schild, H., Arnold-Schild, D., Lammert, E., & Rammensee, H. G. (1999). Stress proteins and immunity mediated by cytotoxic T lymphocytes. Current Opinion in Immunology, 11, 109–113.CrossRefPubMedGoogle Scholar
  68. Schmitt, E., Gehrmann, M., Brunet, M., Multhoff, G., & Garrido, C. (2007). Intracellular and extracellular functions of heat shock proteins: Repercussions in cancer therapy. Journal of Leukocyte Biology, 81, 15–27.CrossRefPubMedGoogle Scholar
  69. Seigneuric, R., Mjahed, H., Gobbo, J., Joly, A. L., Berthenet, K., Shirley, S., & Garrido, C. (2011). Heat shock proteins as danger signals for cancer detection. Frontiers in Oncology, 1, 37–46.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sessa, C., Shapiro, G. I., Bhalla, K. N., Britten, C., Jacks, K. S., Mita, M., Papadimitrakopoulou, V., Pluard, T., Samuel, T. A., Akimov, M., & Quadt, C. (2013). First-in-human phase I dose-escalation study of the HSP90 inhibitor AUY922 in patients with advanced solid tumors. Clinical Cancer Research, 19, 3671–3680.CrossRefPubMedGoogle Scholar
  71. Shibata, T., Arisawa, T., Tahara, T., Yoshioka, D., Maruyama, N., Fujita, H., Kamiya, Y., Nakamura, M., Nagasaka, M., Iwata, M., & Takahama, K. (2009). Protective role of genetic polymorphism of heat shock protein 70-2 for gastric cancer risk. Digestive Diseases and Sciences, 54, 70–74.CrossRefPubMedGoogle Scholar
  72. Stewart, B. W., & Wild, C. P. (2017). World Cancer Report 2014. Lyon: WHO/IARC Publications.Google Scholar
  73. Takayama, S., Reed, J. C., & Homma, S. (2003). Heat-shock proteins as regulators of apoptosis. Oncogene, 22, 9041–9047.CrossRefPubMedGoogle Scholar
  74. Targosz, A., Brzozowski, T., Pierzchalski, P., Szczyrk, U., Ptak-Belowska, A., Konturek, S. J., & Pawlik, W. (2012). Helicobacter pylori promotes apoptosis, activates cyclooxygenase (COX)-2 and inhibits heat shock protein HSP70 in gastric cancer epithelial cells. Inflammation Research, 61, 955–966.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Vilasi, S., Carrotta, R., Mangione, M. R., Campanella, C., Librizzi, F., Randazzo, L., Martorana, V., Gammazza, A. M., Ortore, M. G., Vilasi, A., & Pocsfalvi, G. (2014). Human Hsp60 with its mitochondrial import signal occurs in solution as heptamers and tetradecamers remarkably stable over a wide range of concentrations. PLoS One, 9, e97657.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wang, X. P., Liao, J., Liu, G. Z., Wang, X. C., & Shang, H. W. (2005). Co-expression of heat shock protein 70 and glucose-regulated protein 94 in human gastric carcinoma cell line BGC-823. World Journal of Gastroenterology, 11, 3601–3604.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Welch, W. J. (1992). Mammalian stress response: Cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiological Reviews, 72, 1063–1081.CrossRefPubMedGoogle Scholar
  78. Witkin, S. S. (2001). Heat shock protein expression and immunity: Relevance to gynecologic oncology. European Journal of Gynaecological Oncology, 22, 249–256.PubMedGoogle Scholar
  79. Xiang, T. X., Li, Y., Jiang, Z., Huang, A. L., Luo, C., Zhan, B., Wang, P. L., & Tao, X. H. (2008). RNA interference-mediated silencing of the Hsp70 gene inhibits human gastric cancer cell growth and induces apoptosis in vitro and in vivo. Tumori, 94, 539–550.CrossRefPubMedGoogle Scholar
  80. Yao, Y., Wu, J., Gu, T., Cheng, Y., & Li, G. (2016). Comparative analysis of the interaction of HSPs in dendritic cells, macrophages, RGM-1 cells infected by Helicobacter pylori. American Journal of Translational Research, 8, 4184–4194.Google Scholar
  81. Yeo, M., Park, H. K., Kim, D. K., Cho, S. W., Kim, Y. S., Cho, S. Y., Paik, Y. K., & Hahm, K. B. (2004). Restoration of heat shock protein70 suppresses gastric mucosal inducible nitric oxide synthase expression induced by Helicobacter pylori. Proteomics, 4, 3335–3342.CrossRefPubMedGoogle Scholar
  82. Zhang, H., Jin, T., Zhang, G., Chen, L., Zou, W., & Li, Q. Q. (2011). Polymorphisms in heat-shock protein 70 genes are associated with coal workers’ pneumoconiosis in southwestern China. In Vivo, 25, 251–257.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Prakash Chand Sharma
    • 1
  • Renu Verma
    • 1
  1. 1.University School of BiotechnologyGuru Gobind Singh Indraprastha UniversityNew DelhiIndia

Personalised recommendations