Hsp70-Family Proteins and Neurodegenerative Diseases

  • Zheying Sun
  • Roy J. Blackburn
  • Laura J. Blair
  • John KorenIIIEmail author
Part of the Heat Shock Proteins book series (HESP, volume 14)


Neuronal proteostasis is a highly regulated and crucial component of neural function. Unlike other tissues and organ, cell loss due to damage and dysfunctional signaling mechanisms is not an option for the brain. Neurons are thusly dependent on the collective cellular machinery of the molecular chaperones. Hsp70, a molecular chaperone which hydrolyzes ATP to fold proteins into a functional state, has been implicated as both a driver of disease pathogenesis and a therapeutic target for the activities and associations identified in several neurodegenerative diseases. Through interaction studies, genetic models, and small molecule therapeutics which serve as chemical tools, we have gained a greater understanding and appreciation for the role of Hsp70 in several neurodegenerative diseases. This chapter will discuss the studies and tools which elucidated the role of Hsp70 family members in neurodegenerative disorders and will offer perspective into therapeutic interventions which may prove beneficial for treating these diseases.


Alzheimer’s disease Hsp70 Molecular chaperones Neurodegenerative diseases Parkinson’s disease 




Amyloid beta


Alzheimer’s disease


Amyotrophic lateral sclerosis


α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid


Bcl2-associated athanogene-1


c-terminus of Hsc70 interacting protein


Clatherin-mediated endocytosis


Familial Amyotrophic lateral sclerosis




Huntington’s disease


Heat shock cognate


Heat shock protein


Leucine-rich repeat kinase 2

MAPT, tau

Microtubule associating protein tau


Polymerase chain reaction


Parkinson’s disease




Spinocerebellar ataxia


Substantia nigra pars compacta


Superoxide dismutase 1


TAR DNA binding protein 43


Ubiquitin-proteasome system



This book chapter is dedicated to the life and memory of Dr. Chad A. Dickey. We apologize to the many authors who have contributed to our understanding of the molecular chaperone and neurodegenerative disease fields, and whose work we have failed to discuss or cite.


  1. Abisambra, J., Jinwal, U. K., Miyata, Y., Rogers, J., Blair, L., Li, X., Seguin, S. P., Wang, L., Jin, Y., Bacon, J., et al. (2013). Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Biological Psychiatry, 74, 367–374.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-Ramahi, I., Lam, Y. C., Chen, H. K., de Gouyon, B., Zhang, M., Perez, A. M., Branco, J., de Haro, M., Patterson, C., Zoghbi, H. Y., et al. (2006). CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. The Journal of Biological Chemistry, 281(36), 26714–26724.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aprile, F. A., Sormanni, P., & Vendruscolo, M. (2015). A rational design strategy for the selective activity enhancement of a molecular chaperone toward a target substrate. Biochemistry, 54, 5103–5112.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aprile, F. A., Kallstig, E., Limorenko, G., Vendruscolo, M., Ron, D., & Hansen, C. (2017). The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress alpha-synuclein aggregation. Scientific Reports, 7, 9039.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., Lee, V. M., & Bonini, N. M. (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science, 295, 865–868.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Batulan, Z., Taylor, D. M., Aarons, R. J., Minotti, S., Doroudchi, M. M., Nalbantoglu, J., & Durham, H. D. (2006). Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. Neurobiology of Disease, 24, 213–225.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beere, H. M., Wolf, B. B., Cain, K., Mosser, D. D., Mahboubi, A., Kuwana, T., Tailor, P., Morimoto, R. I., Cohen, G. M., & Green, D. R. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology, 2, 469–475.CrossRefPubMedGoogle Scholar
  8. Boluda, S., Iba, M., Zhang, B., Raible, K. M., Lee, V. M., & Trojanowski, J. Q. (2015). Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains. Acta Neuropathologica, 129, 221–237.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bruijn, L. I., Becher, M. W., Lee, M. K., Anderson, K. L., Jenkins, N. A., Copeland, N. G., Sisodia, S. S., Rothstein, J. D., Borchelt, D. R., Price, D. L., et al. (1997). ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron, 18, 327–338.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Choi, J. S., Cho, S., Park, S. G., Park, B. C., & Lee, D. H. (2004). Co-chaperone CHIP associates with mutant Cu/Zn-superoxide dismutase proteins linked to familial amyotrophic lateral sclerosis and promotes their degradation by proteasomes. Biochemical and Biophysical Research Communications, 321, 574–583.CrossRefPubMedGoogle Scholar
  11. Cummings, C. J., Mancini, M. A., Antalffy, B., DeFranco, D. B., Orr, H. T., & Zoghbi, H. Y. (1998). Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nature Genetics, 19, 148–154.CrossRefPubMedGoogle Scholar
  12. Cummings, C. J., Sun, Y., Opal, P., Antalffy, B., Mestril, R., Orr, H. T., Dillmann, W. H., & Zoghbi, H. Y. (2001). Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Human Molecular Genetics, 10, 1511–1518.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dayalu, P., & Albin, R. L. (2015). Huntington disease: Pathogenesis and treatment. Neurologic Clinics, 33, 101–114.CrossRefPubMedGoogle Scholar
  14. Dickey, C. A., Kamal, A., Lundgren, K., Klosak, N., Bailey, R. M., Dunmore, J., Ash, P., Shoraka, S., Zlatkovic, J., Eckman, C. B., et al. (2007). The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. The Journal of Clinical Investigation, 117, 648–658.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dickey, C. A., Koren, J., Zhang, Y. J., Xu, Y. F., Jinwal, U. K., Birnbaum, M. J., Monks, B., Sun, M., Cheng, J. Q., Patterson, C., et al. (2008). Akt and CHIP coregulate tau degradation through coordinated interactions. Proceedings of the National Academy of Sciences of the United States of America, 105, 3622–3627.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dou, F., Netzer, W. J., Tanemura, K., Li, F., Hartl, F. U., Takashima, A., Gouras, G. K., Greengard, P., & Xu, H. (2003). Chaperones increase association of tau protein with microtubules. Proceedings of the National Academy of Sciences of the United States of America, 100, 721–726.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Durham, H. D., Roy, J., Dong, L., & Figlewicz, D. A. (1997). Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. Journal of Neuropathology and Experimental Neurology, 56, 523–530.CrossRefPubMedGoogle Scholar
  18. Durr, A., Gargiulo, M., & Feingold, J. (2012). The presymptomatic phase of Huntington disease. Revue Neurologique (Paris), 168, 806–808.CrossRefGoogle Scholar
  19. Elliott, E., Tsvetkov, P., & Ginzburg, I. (2007). BAG-1 associates with Hsc70.Tau complex and regulates the proteasomal degradation of Tau protein. The Journal of Biological Chemistry, 282, 37276–37284.CrossRefPubMedGoogle Scholar
  20. Evans, C. G., Jinwal, U. K., Makley, L. N., Dickey, C. A., & Gestwicki, J. E. (2011). Identification of dihydropyridines that reduce cellular tau levels. Chemical Communication (Cambridge), 47, 529–531.CrossRefGoogle Scholar
  21. Falsone, S. F., Kungl, A. J., Rek, A., Cappai, R., & Zangger, K. (2009). The molecular chaperone Hsp90 modulates intermediate steps of amyloid assembly of the Parkinson-related protein alpha-synuclein. The Journal of Biological Chemistry, 284, 31190–31199.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Flower, T. R., Chesnokova, L. S., Froelich, C. A., Dixon, C., & Witt, S. N. (2005). Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. Journal of Molecular Biology, 351, 1081–1100.CrossRefPubMedGoogle Scholar
  23. Fontaine, S. N., Zheng, D., Sabbagh, J. J., Martin, M. D., Chaput, D., Darling, A., Trotter, J. H., Stothert, A. R., Nordhues, B. A., Lussier, A., et al. (2016). DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. The EMBO Journal, 35, 1537–1549.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fukuzono, T., Pastuhov, S. I., Fukushima, O., Li, C., Hattori, A., Iemura, S., Natsume, T., Shibuya, H., Hanafusa, H., Matsumoto, K., et al. (2016). Chaperone complex BAG2-HSC70 regulates localization of Caenorhabditis elegans leucine-rich repeat kinase LRK-1 to the Golgi. Genes to Cells, 21, 311–324.CrossRefPubMedGoogle Scholar
  25. Gao, X., Carroni, M., Nussbaum-Krammer, C., Mogk, A., Nillegoda, N. B., Szlachcic, A., Guilbride, D. L., Saibil, H. R., Mayer, M. P., & Bukau, B. (2015). Human Hsp70 disaggregase reverses Parkinson’s-linked alpha-synuclein amyloid fibrils. Molecular Cell, 59, 781–793.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Guo, J. L., Narasimhan, S., Changolkar, L., He, Z., Stieber, A., Zhang, B., Gathagan, R. J., Iba, M., McBride, J. D., Trojanowski, J. Q., et al. (2016). Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice. The Journal of Experimental Medicine, 213, 2635–2654.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Iba, M., McBride, J. D., Guo, J. L., Zhang, B., Trojanowski, J. Q., & Lee, V. M. (2015). Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC’s afferent and efferent connections. Acta Neuropathologica, 130, 349–362.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ishigaki, S., Niwa, J., Yamada, S., Takahashi, M., Ito, T., Sone, J., Doyu, M., Urano, F., & Sobue, G. (2007). Dorfin-CHIP chimeric proteins potently ubiquitylate and degrade familial ALS-related mutant SOD1 proteins and reduce their cellular toxicity. Neurobiology of Disease, 25, 331–341.CrossRefPubMedGoogle Scholar
  29. Jana, N. R., Tanaka, M., Wang, G., & Nukina, N. (2000). Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: Their role in suppression of aggregation and cellular toxicity. Human Molecular Genetics, 9, 2009–2018.CrossRefPubMedGoogle Scholar
  30. Jana, N. R., Dikshit, P., Goswami, A., Kotliarova, S., Murata, S., Tanaka, K., & Nukina, N. (2005). Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. The Journal of Biological Chemistry, 280, 11635–11640.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery, and Psychiatry, 79, 368–376.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jinwal, U. K., Miyata, Y., Koren, J., 3rd, Jones, J. R., Trotter, J. H., Chang, L., O’Leary, J., Morgan, D., Lee, D. C., Shults, C. L., et al. (2009). Chemical manipulation of hsp70 ATPase activity regulates tau stability. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29, 12079–12088.CrossRefGoogle Scholar
  33. Jinwal, U. K., O’Leary, J. C., 3rd, Borysov, S. I., Jones, J. R., Li, Q., Koren, J., 3rd, Abisambra, J. F., Vestal, G. D., Lawson, L. Y., Johnson, A. G., et al. (2010). Hsc70 rapidly engages tau after microtubule destabilization. The Journal of Biological Chemistry, 285, 16798–16805.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kalmar, B., Novoselov, S., Gray, A., Cheetham, M. E., Margulis, B., & Greensmith, L. (2008). Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. Journal of Neurochemistry, 107, 339–350.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kalmar, B., Edet-Amana, E., & Greensmith, L. (2012). Treatment with a coinducer of the heat shock response delays muscle denervation in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis: Official Publication of the World Federation of Neurology Research Group on Motor Neuron Diseases, 13, 378–392.CrossRefGoogle Scholar
  36. Kamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M. F., Fritz, L. C., & Burrows, F. J. (2003). A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature, 425, 407–410.CrossRefPubMedGoogle Scholar
  37. Kelly, E. B. (2013). Encyclopedia of human genetics and disease (Vol. 1). Santa Barbara: ABC-CLIO.Google Scholar
  38. Kieran, D., Kalmar, B., Dick, J. R., Riddoch-Contreras, J., Burnstock, G., & Greensmith, L. (2004). Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nature Medicine, 10, 402–405.CrossRefPubMedGoogle Scholar
  39. Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., Burrell, J. R., & Zoing, M. C. (2011). Amyotrophic lateral sclerosis. Lancet, 377, 942–955.CrossRefGoogle Scholar
  40. Klucken, J., Shin, Y., Hyman, B. T., & McLean, P. J. (2004). A single amino acid substitution differentiates Hsp70-dependent effects on alpha-synuclein degradation and toxicity. Biochemical and Biophysical Research Communications, 325, 367–373.CrossRefPubMedGoogle Scholar
  41. Koren, J., 3rd, Jinwal, U. K., Jin, Y., O’Leary, J., Jones, J. R., Johnson, A. G., Blair, L. J., Abisambra, J. F., Chang, L., Miyata, Y., et al. (2010). Facilitating Akt clearance via manipulation of Hsp70 activity and levels. The Journal of Biological Chemistry, 285, 2498–2505.CrossRefPubMedGoogle Scholar
  42. Koyama, S., Arawaka, S., Chang-Hong, R., Wada, M., Kawanami, T., Kurita, K., Kato, M., Nagai, M., Aoki, M., Itoyama, Y., et al. (2006). Alteration of familial ALS-linked mutant SOD1 solubility with disease progression: Its modulation by the proteasome and Hsp70. Biochemical and Biophysical Research Communications, 343, 719–730.CrossRefPubMedGoogle Scholar
  43. Lashuel, H. A., Petre, B. M., Wall, J., Simon, M., Nowak, R. J., Walz, T., & Lansbury, P. T., Jr. (2002). Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. Journal of Molecular Biology, 322, 1089–1102.CrossRefPubMedGoogle Scholar
  44. Lichtenberg, M., Mansilla, A., Zecchini, V. R., Fleming, A., & Rubinsztein, D. C. (2011). The Parkinson’s disease protein LRRK2 impairs proteasome substrate clearance without affecting proteasome catalytic activity. Cell Death & Disease, 2, e196.CrossRefGoogle Scholar
  45. Liu, J., Shinobu, L. A., Ward, C. M., Young, D., & Cleveland, D. W. (2005). Elevation of the Hsp70 chaperone does not effect toxicity in mouse models of familial amyotrophic lateral sclerosis. Journal of Neurochemistry, 93, 875–882.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lotz, G. P., Legleiter, J., Aron, R., Mitchell, E. J., Huang, S. Y., Ng, C., Glabe, C., Thompson, L. M., & Muchowski, P. J. (2010). Hsp70 and Hsp40 functionally interact with soluble mutant huntingtin oligomers in a classic ATP-dependent reaction cycle. The Journal of Biological Chemistry, 285, 38183–38193.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Luk, K. C., Mills, I. P., Trojanowski, J. Q., & Lee, V. M. Y. (2008). Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. Biochemistry, 47, 12614–12625.CrossRefPubMedPubMedCentralGoogle Scholar
  48. McLean, P. J., Klucken, J., Shin, Y., & Hyman, B. T. (2004). Geldanamycin induces Hsp70 and prevents alpha-synuclein aggregation and toxicity in vitro. Biochemical and Biophysical Research Communications, 321, 665–669.CrossRefPubMedGoogle Scholar
  49. Monsellier, E., Redeker, V., Ruiz-Arlandis, G., Bousset, L., & Melki, R. (2015). Molecular interaction between the chaperone Hsc70 and the N-terminal flank of huntingtin exon 1 modulates aggregation. The Journal of Biological Chemistry, 290, 2560–2576.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Muchowski, P. J., Schaffar, G., Sittler, A., Wanker, E. E., Hayer-Hartl, M. K., & Hartl, F. U. (2000). Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proceedings of the National Academy of Sciences of the United States of America, 97, 7841–7846.CrossRefPubMedPubMedCentralGoogle Scholar
  51. O’Leary, J. C., 3rd, Li, Q., Marinec, P., Blair, L. J., Congdon, E. E., Johnson, A. G., Jinwal, U. K., Koren, J., 3rd, Jones, J. R., Kraft, C., et al. (2010). Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Molecular Neurodegeneration, 5, 45.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Opazo, F., Krenz, A., Heermann, S., Schulz, J. B., & Falkenburger, B. H. (2008). Accumulation and clearance of alpha-synuclein aggregates demonstrated by time-lapse imaging. Journal of Neurochemistry, 106, 529–540.CrossRefPubMedGoogle Scholar
  53. Orr, H. T. (2012). Cell biology of spinocerebellar ataxia. The Journal of Cell Biology, 197, 167–177.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Park, S. H., Kukushkin, Y., Gupta, R., Chen, T., Konagai, A., Hipp, M. S., Hayer-Hartl, M., & Hartl, F. U. (2013). PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell, 154, 134–145.CrossRefPubMedGoogle Scholar
  55. Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O’Regan, J. P., Deng, H. X., et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Roy, J., Minotti, S., Dong, L., Figlewicz, D. A., & Durham, H. D. (1998). Glutamate potentiates the toxicity of mutant Cu/Zn-superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18, 9673–9684.CrossRefGoogle Scholar
  57. Shimura, H., Schwartz, D., Gygi, S. P., & Kosik, K. S. (2004). CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. The Journal of Biological Chemistry, 279, 4869–4876.CrossRefPubMedGoogle Scholar
  58. St Martin, J. L., Klucken, J., Outeiro, T. F., Nguyen, P., Keller-McGandy, C., Cantuti-Castelvetri, I., Grammatopoulos, T. N., Standaert, D. G., Hyman, B. T., & McLean, P. J. (2007). Dopaminergic neuron loss and up-regulation of chaperone protein mRNA induced by targeted over-expression of alpha-synuclein in mouse substantia nigra. Journal of Neurochemistry, 100, 1449–1457.PubMedGoogle Scholar
  59. Tantucci, M., Mariucci, G., Taha, E., Spaccatini, C., Tozzi, A., Luchetti, E., Calabresi, P., & Ambrosini, M. V. (2009). Induction of heat shock protein 70 reduces the alteration of striatal electrical activity caused by mitochondrial impairment. Neuroscience, 163, 735–740.CrossRefPubMedGoogle Scholar
  60. Tetzlaff, J. E., Putcha, P., Outeiro, T. F., Ivanov, A., Berezovska, O., Hyman, B. T., & McLean, P. J. (2008). CHIP targets toxic alpha-synuclein oligomers for degradation. The Journal of Biological Chemistry, 283, 17962–17968.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Thompson, A. D., Scaglione, K. M., Prensner, J., Gillies, A. T., Chinnaiyan, A., Paulson, H. L., Jinwal, U. K., Dickey, C. A., & Gestwicki, J. E. (2012). Analysis of the tau-associated proteome reveals that exchange of Hsp70 for Hsp90 is involved in tau degradation. ACS Chemical Biology, 7(10), 1677–1686.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Voss, K., Combs, B., Patterson, K. R., Binder, L. I., & Gamblin, T. C. (2012). Hsp70 alters tau function and aggregation in an isoform specific manner. Biochemistry, 51, 888–898.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Warrick, J. M., Chan, H. Y., Gray-Board, G. L., Chai, Y., Paulson, H. L., & Bonini, N. M. (1999). Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nature Genetics, 23, 425–428.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Watanabe, M., Dykes-Hoberg, M., Culotta, V. C., Price, D. L., Wong, P. C., & Rothstein, J. D. (2001). Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiology of Disease, 8, 933–941.CrossRefPubMedGoogle Scholar
  65. Williams, A. J., Knutson, T. M., Colomer Gould, V. F., & Paulson, H. L. (2009). In vivo suppression of polyglutamine neurotoxicity by C-terminus of Hsp70-interacting protein (CHIP) supports an aggregation model of pathogenesis. Neurobiology of Disease, 33, 342–353.CrossRefPubMedGoogle Scholar
  66. Witt, S. N. (2010). Hsp70 molecular chaperones and Parkinson’s disease. Biopolymers, 93, 218–228.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yoo, B. C., Seidl, R., Cairns, N., & Lubec, G. (1999). Heat-shock protein 70 levels in brain of patients with Down syndrome and Alzheimer’s disease. Journal of Neural Transmission. Supplementum, 57, 315–322.PubMedGoogle Scholar
  68. Yu, A., Shibata, Y., Shah, B., Calamini, B., Lo, D. C., & Morimoto, R. I. (2014). Protein aggregation can inhibit clathrin-mediated endocytosis by chaperone competition. Proceedings of the National Academy of Sciences of the United States of America, 111, E1481–E1490.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zarei, S., Carr, K., Reiley, L., Diaz, K., Guerra, O., Altamirano, P. F., Pagani, W., Lodin, D., Orozco, G., & Chinea, A. (2015). A comprehensive review of amyotrophic lateral sclerosis. Surgical Neurology International, 6, 171.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zetterstrom, P., Graffmo, K. S., Andersen, P. M., Brannstrom, T., & Marklund, S. L. (2011). Proteins that bind to misfolded mutant superoxide dismutase-1 in spinal cords from transgenic amyotrophic lateral sclerosis (ALS) model mice. The Journal of Biological Chemistry, 286, 20130–20136.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zheying Sun
    • 1
  • Roy J. Blackburn
    • 1
  • Laura J. Blair
    • 1
  • John KorenIII
    • 1
    Email author
  1. 1.Department of Molecular Medicine, College of MedicineUSF Byrd Alzheimer’s Institute, University of South FloridaTampaUSA

Personalised recommendations