Suppression of HSP70 Expression by Quercetin and Its Therapeutic Potential Against Cancer

  • Evren Önay UçarEmail author
  • Aslıhan Şengelen
  • Elif Mertoğlu
  • Murat Pekmez
  • Nazlı Arda
Part of the Heat Shock Proteins book series (HESP, volume 14)


Heat shock response is one of several survival pathways that protects cells against harsh conditions. This response mechanism, which is evolutionarily protected in all organisms, enhances the expression of heat shock proteins (HSP) that show protective properties for cells under stress conditions. High expression of many HSP is observed in cancer, and their functions aides the advancement of disease. It is known that overexpression of HSP70, a member of HSP family, in cancerous cells has been closely associated with tumor cell proliferation, apoptosis inhibition, enhanced migration and metastasis and drug resistance promotion. Therefore, targeting HSP70 in cancer treatment is very important. One of the best-studied inhibitors known for HSP70 is quercetin that is widely distributed flavonoid in the plant kingdom. Several in vivo and in vitro studies have reported the efficacy of quercetin in reducing elevated HSP70 levels in cancer therapy. It has become a focal point as an anticancer agent because of the induction of apoptosis in many different cancer cells. In this chapter, we reviewed the role of HSP70 in different cancer types and the suppressive effect of quercetin on expression of HSP70 family members. Moreover, we emphasized molecular mechanisms targeted by quercetin in cancer and its relationship to Hsp70.


Apoptosis Cancer HSP70 Quercetin Stress proteins Therapeutic target 


Akts (or PKB)

protein kinase B


AMP activated protein kinase


calcium/calmodulin-dependent protein kinase II


cyclin-dependent kinases


checkpoint kinase 2


casein kinase 2


endoplasmic reticulum


extracellular signal-regulated kinase


heat shock cognate


heat shock element


heat shock factor


heat shock protein




Janus kinase


C-Jun N-terminal kinase


mitogen-activated protein kinase


matrix metalloproteinase


phosphatidylinositol 3-kinase


retinoblastoma protein


reactive oxygen species


ribosomal protein S6 kinase 2


ribosomal protein S6 kinase beta-1


short hairpin RNA


small interfering RNA


signal transducer and activator of transcription 3


vascular endothelial growth factor



This study was supported by the Research Fund of Istanbul University (Project no. 57959 and 24987).


  1. Aalinkeel, R., Bindukumar, B., Reynolds, J. L., et al. (2008). The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. The Prostate, 68, 1773–1789.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Abe, M., Manola, J. B., Oh, W. K., et al. (2004). Plasma levels of heat shock protein 70 in patients with prostate cancer: A potential biomarker for prostate cancer. Clinical Prostate Cancer, 3, 49–53.CrossRefPubMedGoogle Scholar
  3. Aghdassi, A., Phillips, P., & Dudeja, V. (2007). Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Research, 67, 616–625.CrossRefPubMedGoogle Scholar
  4. Alexiou, G. A., Vartholomatos, G., Stefanaki, K., et al. (2013). Expression of heat shock proteins in medulloblastoma. Journal of Neurosurgery. Pediatrics, 12, 452–457.CrossRefPubMedGoogle Scholar
  5. Alexiou, G. A., Karamoutsios, A., Lallas, G., et al. (2014). Expression of heat shock proteins in brain tumors. Turkish Neurosurgery, 24, 745–749.PubMedGoogle Scholar
  6. Arap, M. A., Lahdenranta, J., Mintz, P. J., et al. (2004). Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell, 6, 275–284.CrossRefPubMedGoogle Scholar
  7. Atashpour, S., Fouladdel, S., Movahhed, T. K., et al. (2015). Quercetin induces cell cycle arrest and apoptosis in CD133(+) cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin. Iranian Journal of Basic Medical Sciences, 18, 635–643.PubMedCentralPubMedGoogle Scholar
  8. Awad, H. M., Boersma, M. G., Vervoort, J., & Rietjens, I. M. (2000). Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts. Archives of Biochemistry and Biophysics, 378, 224–233.CrossRefPubMedGoogle Scholar
  9. Bądziul, D., Jakubowicz-Gil, J., Langner, E., Rzeski, W., Głowniak, K., & Gawron, A. (2014a). The effect of quercetin and imperatorin on programmed cell death induction in T98G cells in vitro. Pharmacological Reports, 66, 292–300.CrossRefPubMedGoogle Scholar
  10. Bądziul, D., Jakubowicz-Gil, J., Paduch, R., Głowniak, K., & Gawron, A. (2014b). Combined treatment with quercetin and imperatorin as a potent strategy for killing HeLa and Hep-2 cells. Molecular and Cellular Biochemistry, 392, 213–227.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Balázs, M., Zsolt, H., László, G., et al. (2017). Serum heat shock protein 70, as a potential biomarker for small cell lung cancer. Pathology Oncology Research, 23, 377–383.CrossRefPubMedGoogle Scholar
  12. Banerjee, T., Van der Vliet, A., & Ziboh, V. A. (2002). Downregulation of COX-2 and iNOS by amentoflavone and quercetin in A549 human lung adenocarcinoma cell line. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 66, 485–492.CrossRefPubMedGoogle Scholar
  13. Beere, H. M., Wolf, B. B., Cain, K., et al. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology, 2, 469–475.CrossRefPubMedGoogle Scholar
  14. Benjamin, I. J., & McMillan, D. R. (1998). Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circulation Research, 83, 117–132.CrossRefPubMedGoogle Scholar
  15. Bhat, F. A., Sharmila, G., Balakrishnan, S., et al. (2014). Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway. The Journal of Nutritional Biochemistry, 25, 1132–1139.CrossRefPubMedGoogle Scholar
  16. Bors, W., Heller, W., Michel, C., & Saran, M. (1990). Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods in Enzymology, 186, 343–355.CrossRefPubMedGoogle Scholar
  17. Braganhol, E., Zamin, L. L., Canedo, A. D., et al. (2006). Antiproliferative effect of quercetin in the human U138MG glioma cell line. Anti-Cancer Drugs, 17, 663–671.CrossRefPubMedGoogle Scholar
  18. Canöz, O., Belenli, O., & Patiroglu, T. E. (2002). General features of gastric carcinomas and comparison of HSP70 and NK cell immunoreactivity with prognostic factors. Pathology Oncology Research, 8, 262–269.CrossRefPubMedGoogle Scholar
  19. Cao, H. H., Tse, A. K., Kwan, H. Y., et al. (2014). Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochemical Pharmacology, 87, 424–434.CrossRefPubMedGoogle Scholar
  20. Chatterjee, M., Andrulis, M., Stühmer, T., et al. (2013). The PI3K/Akt signaling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma. Haematologica, 98, 1132–1141.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Chen, W. T., Zhu, G., Pfaffenbach, K., Kanel, G., Stiles, B., & Lee, A. S. (2014). GRP78 as a regulator of liver steatosis and cancer progression mediated by loss of the tumor suppressor PTEN. Oncogene, 33, 4997–5005.CrossRefPubMedGoogle Scholar
  22. Chen, X., Dong, X. S., Gao, H. Y., et al. (2016). Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells. Molecular Medicine Reports, 13, 689–696.CrossRefPubMedGoogle Scholar
  23. Cheong, E., Ivory, K., Doleman, J., Parker, M. L., Rhodes, M., & Johnson, I. T. (2004). Synthetic and naturally occurring COX-2 inhibitors suppress proliferation in a human oesophageal adenocarcinoma cell line (OE33) by inducing apoptosis and cell cycle arrest. Carcinogenesis, 25, 1945–1952.CrossRefPubMedGoogle Scholar
  24. Chien, S. Y., Wu, Y. C., Chung, J. G., et al. (2009). Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Human & Experimental Toxicology, 28, 493–503.CrossRefGoogle Scholar
  25. Choi, J. A., Kim, J. Y., Lee, J. Y., et al. (2001). Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. International Journal of Oncology, 19, 837–844.PubMedGoogle Scholar
  26. Ciocca, D. R., & Calderwood, S. K. (2005). Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 10, 86–103.CrossRefGoogle Scholar
  27. Conklin, C. M., Bechberger, J. F., MacFabe, D., Guthrie, N., Kurowska, E. M., & Naus, C. C. (2007). Genistein and quercetin increase connexin43 and suppress growth of breast cancer cells. Carcinogenesis, 28, 93–100.CrossRefPubMedGoogle Scholar
  28. Csokay, B., Prajda, N., Weber, G., & Olah, E. (1997). Molecular mechanisms in the antiproliferative action of quercetin. Life Sciences, 60, 2157–2163.CrossRefPubMedGoogle Scholar
  29. Daugaard, M., Rohde, M., & Jäättelä, M. (2007a). The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Letters, 581, 3702–3710.CrossRefPubMedGoogle Scholar
  30. Daugaard, M., Kirkegaard-Sørensen, T., Ostenfeld, M. S., et al. (2007b). Lens epithelium-derived growth factor is an Hsp70-2 regulated guardian of lysosomal stability in human cancer. Cancer Research, 67, 2559–2567.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Davies, S. P., Reddy, H., Caivano, M., & Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. The Biochemical Journal, 351, 95–105.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Deocaris, C. C., Lu, W. J., Kaul, S. C., & Wadhwa, R. (2013). Druggability of mortalin for cancer and neuro-degenerative disorders. Current Pharmaceutical Design, 19, 418–429.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dihal, A. A., van der Woude, H., Hendriksen, P. J., et al. (2008). Transcriptome and proteome profiling of colon mucosa from quercetin fed F344 rats point to tumor preventive mechanisms, increased mitochondrial fatty acid degradation and decreased glycolysis. Proteomics, 8, 45–61.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dudeja, V., Mujumdar, N., Phillips, P., et al. (2009). Heat shock protein 70 inhibits apoptosis in cancer cells through simultaneous and independent mechanisms. Gastroenterology, 136, 1772–1782.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Dundas, S. R., Lawrie, L. C., Rooney, P. H., & Murray, G. I. (2005). Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. The Journal of Pathology, 205, 74–81.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Duo, J., Ying, G. G., Wang, G. W., & Zhang, L. (2012). Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Molecular Medicine Reports, 5, 1453–1456.PubMedPubMedCentralGoogle Scholar
  37. Duthie, G. G., Duthie, S. J., & Kyle, J. A. (2000). Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutrition Research Reviews, 13, 79–106.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35, 495–516.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Evans, C. G., Chang, L., & Gestwicki, J. E. (2010). Heat shock protein 70 (hsp70) as an emerging drug target. Journal of Medicinal Chemistry, 53, 4585–4602.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Fernandez, P. M., Tabbara, S. O., Jacobs, L. K., et al. (2000). Overexpression of the glucose-regulated stress gene GRP78 in malignantbut not benign human breast lesions. Breast Cancer Research and Treatment, 59, 15–26.CrossRefPubMedGoogle Scholar
  41. Gabai, V. L., Meriin, A. B., & Mosser, D. D. (1997). Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. Journal of Biological Chemistry, 272, 18033–18037.CrossRefPubMedGoogle Scholar
  42. Garrido, C., Brunet, M., Didelot, C., Zermati, Y., Schmitt, E., & Kroemer, G. (2006). Heat shock proteins 27 and 70: Anti-apoptotic proteins with tumourigenic properties. Cell Cycle, 5, 2592–2601.CrossRefPubMedGoogle Scholar
  43. Gazit, G., Lu, J., & Lee, A. S. (1999). De-regulation of GRP stress protein expression in human breast cancer cell lines. Breast Cancer Research and Treatment, 54, 135–146.CrossRefPubMedGoogle Scholar
  44. Gehrmann, M., Specht, H. M., Bayer, C., et al. (2014). Hsp70-a biomarker for tumor detection and monitoring of outcome of radiation therapy in patients with squamous cell carcinoma of the head and neck. Radiation Oncology, 9, 131.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Gibellini, L., Pinti, M., Nasi, M., et al. (2011). Quercetin and cancer chemoprevention. Evidence-based Complementary and Alternative Medicine, 2011, 1–15.CrossRefGoogle Scholar
  46. Giri, B., Sethi, V., Modi, S., et al. (2017). Heat shock protein 70 in pancreatic diseases: Friend or foe. Journal of Surgical Oncology, 116, 114–122.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Granado-Serrano, A. B., Martín, M. A., Bravo, L., Goya, L., & Ramos, S. (2006). Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). The Journal of Nutrition, 136, 2715–2721.CrossRefPubMedGoogle Scholar
  48. Gupta, C., Vikram, A., Tripathi, D. N., Ramarao, P., & Jena, G. B. (2010). Antioxidant and antimutagenic effect of quercetin against DEN induced hepatotoxicity in rat. Phytotherapy Research, 24, 119–128.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Han, Y., Yu, H., Wang, J., Ren, Y., Su, X., & Shi, Y. (2015). Quercetin alleviates myocyte toxic and sensitizes anti-leukemic effect of adriamycin. Hematology, 20, 276–283.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Harwood, M., Danielewska-Nikiel, B., Borzelleca, J. F., Flamm, G. W., Williams, G. M., & Lines, T. C. (2007). A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food and Chemical Toxicology, 4, 2179–2205.CrossRefGoogle Scholar
  51. Hu, Y., Yang, L., Yang, Y., et al. (2016). Oncogenic role of mortalin contributes to ovarian tumorigenesis by activating the MAPK-ERK pathway. Journal of Cellular and Molecular Medicine, 20, 2111–2121.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Hunt, C. R., Dix, D. J., Sharma, G. G., et al. (2004). Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Molecular and Cellular Biology, 2, 899–911.CrossRefGoogle Scholar
  53. Jäättelä, M., & Wissing, D. (1993). Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. The Journal of Experimental Medicine, 177, 231–216.CrossRefPubMedGoogle Scholar
  54. Jakubowicz-Gil, J., Rzymowska, J., & Gawron, A. (2002). Quercetin, apoptosis, heat shock. Biochemical Pharmacology, 64, 1591–1595.CrossRefPubMedGoogle Scholar
  55. Jakubowicz-Gil, J., Paduch, R., Piersiak, T., Głowniak, K., Gawron, A., & Kandefer-Szerszeń, M. (2005). The effect of quercetin on pro-apoptotic activity of cisplatin in HeLa cells. Biochemical Pharmacology, 69, 1343–1350.CrossRefPubMedGoogle Scholar
  56. Jakubowicz-Gil, J., Langner, E., Wertel, I., Piersiak, T., & Rzeski, W. (2010). Temozolomide, quercetin and cell death in the MOGGCCM astrocytoma cell line. Chemico-Biological Interactions, 188, 190–203.CrossRefPubMedGoogle Scholar
  57. Jakubowicz-Gil, J., Langner, E., Bądziul, D., Wertel, I., & Rzeski, W. (2013a). Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumour Biology, 34, 2367–2378.PubMedCentralCrossRefPubMedGoogle Scholar
  58. Jakubowicz-Gil, J., Langner, E., Bądziul, D., Wertel, I., & Rzeski, W. (2013b). Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicology and Applied Pharmacology, 273, 580–589.CrossRefPubMedGoogle Scholar
  59. Jeong, J. H., An, J. Y., Kwon, Y. T., Rhee, J. G., & Lee, Y. J. (2009). Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. Journal of Cellular Biochemistry, 106, 73–82.PubMedCentralCrossRefPubMedGoogle Scholar
  60. Jin, H., Xie, Q., Guo, X., et al. (2017). p63α protein upregulates heat shock protein 70 expression via E2F1 transcription factor 1, promoting Wasf3/Wave3/MMP9 signaling and bladder cancer invasion. Journal of Biological Chemistry, 292(38), 15952–15963. Scholar
  61. Jones, E. L., Zhau, M. J., Stevenson, M. A., & Calderwood, S. K. (2004). The 70 kilodalton heat shock protein is an inhibitor of apoptosis in prostate cancer. International Journal of Hyperthermia, 20, 835–849.CrossRefPubMedGoogle Scholar
  62. Jung, J. H., Lee, J. O., Kim, J. H., et al. (2010). Quercetin suppresses HeLa cell viability via AMPK-induced HSP70 and EGFR down-regulation. Journal of Cellular Physiology, 223, 408–414.PubMedGoogle Scholar
  63. Kampinga, H. H., Hageman, J., Vos, M. J., et al. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones, 14, 105–111.CrossRefGoogle Scholar
  64. Kashyap, D., Mittal, S., Sak, K., Singhal, P., & Tuli, H. S. (2016). Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumour Biology, 37, 12927–12939.CrossRefPubMedGoogle Scholar
  65. Khan, F., Niaz, K., Maqbool, F., et al. (2016). Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients, 8, 1–19.CrossRefGoogle Scholar
  66. Kim, E. J., Choi, C. H., Park, J. Y., Kang, S. K., & Kim, Y. K. (2008). Underlying mechanism of quercetin-induced cell death in human glioma cells. Neurochemical Research, 33, 971–979.CrossRefPubMedGoogle Scholar
  67. Kim, H., Seo, E. M., Sharma, A. R., et al. (2013a). Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. International Journal of Oncology, 43, 1319–1325.CrossRefPubMedGoogle Scholar
  68. Kim, H., Moon, J. Y., Ahn, K. S., & Cho, S. K. (2013b). Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxidative Medicine and Cellular Longevity, 2013, 596496.PubMedCentralPubMedGoogle Scholar
  69. Kluger, H. M., Chelouche Lev, D., & Kluger, Y. (2005). Using a xenograft model of human breast cancer metastasis to find genes associated with clinically aggressive disease. Cancer Research, 65, 5578–5587.CrossRefPubMedGoogle Scholar
  70. Kocsis, J., Madaras, B., Toth, E. K., Fust, G., & Prohaszka, Z. (2010). Serum level of soluble 70-kD heat shock protein is associated with high mortality in patients with colorectal cancer without distant metastasis. Cell Stress & Chaperones, 15, 143–151.CrossRefGoogle Scholar
  71. Koomägi, R., Mattern, J., & Volm, M. (1999). Glucose-related protein (GRP78) and its relationship to the drug-resistance proteins P170, GST-pi, LRP56 and angiogenesis in non-small cell lung carcinomas. Anticancer Research, 19, 4333–4336.PubMedGoogle Scholar
  72. Kubota, H., Yamamoto, S., Itoh, E., et al. (2010). Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress & Chaperones, 15, 1003–1011.CrossRefGoogle Scholar
  73. Kumar, S., Stokes, J., 3rd., Singh, U. P., et al. (2016). Targeting Hsp70: A possible therapy for cancer. Cancer Letters, 374, 156–166.PubMedCentralCrossRefPubMedGoogle Scholar
  74. Lee, A. S. (2007). GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Research, 67, 3496–3499.CrossRefPubMedGoogle Scholar
  75. Lee, K. H., & Yoo, C. G. (2013). Simultaneous inactivation of GSK-3β suppresses quercetin-induced apoptosis by inhibiting the JNK pathway. American Journal of Physiology. Lung Cellular and Molecular Physiology, 304, 782–789.CrossRefGoogle Scholar
  76. Lee, S. J., Choi, S. A., Lee, K. H., et al. (2001). Role of inducible heat shock protein in radiation- induced cell death. Cell Stress & Chaperones, 6, 273–281.CrossRefGoogle Scholar
  77. Lee, J. S., Lee, J. J., & Seo, J. S. (2005). HSP70 deficiency results in activation of c-Jun N-terminal Kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. The Journal of Biological Chemistry, 280, 6634–6641.CrossRefPubMedGoogle Scholar
  78. Lee, S. H., Lee, E. J., & Min, K. H. (2015). Quercetin enhances chemosensitivity to gemcitabine in lung cancer cells by inhibiting heat shock protein 70 expression. Clinical Lung Cancer, 16, e235–e243.CrossRefPubMedGoogle Scholar
  79. Li, H., Sui, C., Kong, F., Zhang, H., Liu, J., & Dong, M. (2007). Expression of HSP70 and JNK-related proteins in human liver cancer: Potential effects on clinical outcome. Digestive and Liver Disease, 39, 663–670.CrossRefPubMedGoogle Scholar
  80. Li, F., Bai, Y., Zhao, M., et al. (2015). Quercetin inhibits vascular endothelial growth factor-induced choroidal and retinal angiogenesis in vitro. Ophthalmic Research, 53, 109–116.CrossRefPubMedGoogle Scholar
  81. Li, J., Tang, C., Li, L., Li, R., & Fan, Y. (2016). Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro. Journal of Neuro-Oncology, 129, 39–45.CrossRefPubMedGoogle Scholar
  82. Lianos, G. D., Alexiou, G. A., Mangano, A., et al. (2015). The role of heat shock proteins in cancer. Cancer Letters, 360, 114–118.CrossRefPubMedGoogle Scholar
  83. Liu, T., Daniels, C. K., & Cao, S. (2012). Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacology & Therapeutics, 136, 354–374.CrossRefGoogle Scholar
  84. McConnell, J. R., & McAlpine, S. R. (2013). Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorganic & Medicinal Chemistry Letters, 23, 1923–1928.CrossRefGoogle Scholar
  85. Meng, L., Gabai, V. L., & Sherman, M. Y. (2010). Heat-shock transcription factor HSF1 has a critical role in human epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis. Oncogene, 29, 5204–5213.PubMedCentralCrossRefPubMedGoogle Scholar
  86. Metodiewa, D., Jaiswal, A. K., Cenas, N., Dickancaité, E., & Segura-Aguilar, J. (1999). Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radical Biology & Medicine, 26, 107–116.CrossRefGoogle Scholar
  87. Misra, U. K., Deedwania, R., & Pizzo, S. V. (2005). Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. The Journal of Biological Chemistry, 280, 26278–26286.PubMedCentralCrossRefPubMedGoogle Scholar
  88. Moghanibashi, M., Rastgar-Jazii, F., Soheili, Z. S., et al. (2013). Esophageal cancer alters the expression of nuclear pore complex binding protein Hsc70 and eIF5A-1. Functional & Integrative Genomics, 13, 253–260.CrossRefGoogle Scholar
  89. Mosser, D. D., & Morimoto, R. I. (2004). Molecular chaperones and the stress of oncogenesis. Oncogene, 23, 2907–2918.CrossRefPubMedGoogle Scholar
  90. Mu, C., Jia, P., Yan, Z., Liu, X., Li, X., & Liu, H. (2007). Quercetin induces cell cycle G1 arrest through elevating Cdk inhibitors p21 and p27 in human hepatoma cell line (HepG2). Methods and Findings in Experimental and Clinical Pharmacology, 29, 179–183.CrossRefPubMedGoogle Scholar
  91. Mukherjee, A., & Khuda-Bukhsh, A. R. (2015). Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall- cell lung-cancer cell line, A549. Journal of Pharmacopuncture, 18, 19–26.PubMedCentralCrossRefPubMedGoogle Scholar
  92. Murakami, A., Ashida, H., & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Letters, 269, 315–325.CrossRefPubMedGoogle Scholar
  93. Murphy, M. E. (2013). The HSP70 family and cancer. Carcinogenesis, 34, 1181–1188.PubMedCentralCrossRefPubMedGoogle Scholar
  94. Nguyen, L. T., Lee, Y. H., Sharma, A. R., et al. (2017). Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity. The Korean Journal of Physiology & Pharmacology, 21, 205–213.CrossRefGoogle Scholar
  95. Niu, P., Liu, L., Gong, Z., et al. (2006). Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress & Chaperones, 11, 162–169.CrossRefGoogle Scholar
  96. Nylandsted, J., Rohde, M., Brand, K., Bastholm, L., Elling, F., & Jäättelä, M. (2000). Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proceedings of the National Academy of Sciences of the United States of America, 97, 7871–7876.PubMedCentralCrossRefPubMedGoogle Scholar
  97. Önay-Uçar, E. (2015). Heat shock proteins and cancer: Plant based therapy. In A. A. A. Asea, N. N. Almasoud, S. Krishnan, & P. Kaur (Eds.), Heat shock protein-based therapies (pp. 27–48). Cham: Springer.CrossRefGoogle Scholar
  98. Ong, C. S., Tran, E., Nguyen, T. T., et al. (2004). Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in Bad and hypophosphorylated retinoblastoma expressions. Oncology Reports, 11, 727–733.PubMedGoogle Scholar
  99. Powers, M. V., Clarke, P. A., & Workman, P. (2008). Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell, 14, 250–262.CrossRefPubMedGoogle Scholar
  100. Regeling, A., Imhann, F., Volders, H. H., et al. (2016). HSPA6 is an ulcerative colitis susceptibility factor that is induced by cigarette smoke and protects intestinal epithelial cells by stabilizing anti-apoptotic Bcl-XL. Biochimica et Biophysica Acta, 1862, 788–796.CrossRefPubMedGoogle Scholar
  101. Rodina, A., Taldone, T., Kang, Y., et al. (2014). Affinity purification probes of potential use to investigate the endogenous Hsp70 interactome in cancer. ACS Chemical Biology, 9, 1698–1705.PubMedCentralCrossRefPubMedGoogle Scholar
  102. Rohde, M., Daugaard, M., Jensen, M. H., Helin, K., Nylandsted, J., & Jäättelä, M. (2005). Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes & Development, 19, 570–582.CrossRefGoogle Scholar
  103. Saleh, A., Srinivasula, S. M., Balkir, L., Robbins, P. D., & Alnemri, E. S. (2000). Negative regulation of the Apaf-1 apoptosome by Hsp70. Nature Cell Biology, 2, 476–483.CrossRefPubMedGoogle Scholar
  104. Schmitt, E., Maingret, L., Puig, P. E., et al. (2006). Heat shock protein 70 neutralization exerts potent antitumor effects in animal models of colon cancer and melanoma. Cancer Research, 15, 4191–4197.CrossRefGoogle Scholar
  105. Shan, B. E., Wang, M. X., & Li, R. Q. (2009). Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/beta-catenin signaling pathway. Cancer Investigation, 27, 604–612.CrossRefPubMedGoogle Scholar
  106. Sherman, M. Y., & Gabai, V. L. (2015). Hsp70 in cancer: Back to the future. Oncogene, 34, 4153–4161.CrossRefPubMedGoogle Scholar
  107. Shuda, M., Kondoh, N., Imazeki, N., et al. (2003). Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: A possible involvement of the ER stress pathway in hepatocarcinogenesis. Journal of Hepatology, 38, 605–614.CrossRefPubMedGoogle Scholar
  108. Siegelin, M. D., Reuss, D. E., Habel, A., Rami, A., & von Deimling, A. (2009). Quercetin promotes degradation of survivin and thereby enhances death-receptor-mediated apoptosis in glioma cells. Neuro-Oncology, 11, 122–131.PubMedCentralCrossRefPubMedGoogle Scholar
  109. Silva, M. M., Santos, M. R., Caroço, G., Rocha, R., Justino, G., & Mira, L. (2002). Structure-antioxidant activity relationships of flavonoids: A re-examination. Free Radical Research, 36, 1219–1227.CrossRefPubMedGoogle Scholar
  110. Snoeckx, L. H., Cornelussen, R. N., Van Nieuwenhoven, F. A., Reneman, R. S., & Van Der Vusse, G. J. (2001). Heat shock proteins and cardiovascular pathophysiology. Physiological Reviews, 81, 1461–1497.CrossRefPubMedGoogle Scholar
  111. Song, M. S., Park, Y. K., Lee, J. H., & Park, K. (2001). Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-ε/ERK/AP-1 signaling cascade. Cancer Research, 61, 8322–8330.PubMedGoogle Scholar
  112. Srivastava, S., Somasagara, R. R., Hegde, M., et al. (2016). Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Scientific Reports, 6, 24049.PubMedCentralCrossRefPubMedGoogle Scholar
  113. Starenki, D., Hong, S. K., Lloyd, R. V., & Park, J. I. (2015). Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene, 34, 4624–4634.CrossRefPubMedGoogle Scholar
  114. Storniolo, A., Raciti, M., Cucina, A., Bizzarri, M., & Renzo, L. D. (2015). Quercetin affects Hsp70/IRE1α mediated protection from death Induced by endoplasmic reticulum stress. Oxidative Medicine and Cellular Longevity, 2015, 1–11.CrossRefGoogle Scholar
  115. Takano, S., Wadhwa, R., Yoshii, Y., Nose, T., Kaul, S. C., & Mitsui, Y. (1997). Elevated levels of mortalin expression in human brain tumors. Experimental Cell Research, 237, 38–45.CrossRefPubMedGoogle Scholar
  116. Tao, Y., Messer, J. S., Goss, K. H., Hart, J., Bissonnette, M., & Chang, E. B. (2016). Hsp70 exerts oncogenic activity in the Apc mutant Min mouse model. Carcinogenesis, 37, 731–739.CrossRefPubMedGoogle Scholar
  117. Teng, Y., Ngoka, L., Mei, Y., Lesoon, L., & Cowell, J. K. (2012). HSP90 and HSP70 proteins are essential for stabilization and activation of WASF3 metastasis-promoting protein. The Journal of Biological Chemistry, 287, 10051–10059.PubMedCentralCrossRefPubMedGoogle Scholar
  118. Vargas, A., & Burd, R. (2010). Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and management. Nutrition Reviews, 68, 418–428.CrossRefPubMedGoogle Scholar
  119. Vidya-Priyadarsini, R., Senthil-Murugan, R., Maitreyi, S., Ramalingam, K., Karunagaran, D., & Nagini, S. (2010). The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. European Journal of Pharmacology, 649, 84–91.CrossRefPubMedGoogle Scholar
  120. Vijayababu, M. R., Kanagaraj, P., Arunkumar, A., Ilangovan, R., Aruldhas, M. M., & Arunakaran, J. (2005). Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. Journal of Cancer Research and Clinical Oncology, 131, 765–771.CrossRefPubMedGoogle Scholar
  121. Vijayababu, M. R., Arunkumar, A., Kanagaraj, P., Venkataraman, P., Krishnamoorthy, G., & Arunakaran, J. (2006). Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Molecular and Cellular Biochemistry, 287, 109–116.CrossRefPubMedGoogle Scholar
  122. Wang, L., Tu, Y. C., Lian, T. W., Hung, J. T., Yen, J. H., & Wu, M. J. (2006). Distinctive antioxidant and antiinflammatory effects of flavonols. Journal of Agricultural and Food Chemistry, 54, 9798–9804.CrossRefPubMedGoogle Scholar
  123. Wang, R. E., Kao, J. L., Hilliard, C. A., et al. (2009). Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives. Journal of Medicinal Chemistry, 52, 1912–1921.PubMedCentralCrossRefPubMedGoogle Scholar
  124. Wu, J., Liu, T., Rios, Z., Mei, Q., Lin, X., & Cao, S. (2017). Heat shock proteins and cancer. Trends in Pharmacological Sciences, 38, 226–256.CrossRefPubMedGoogle Scholar
  125. Yeh, C. H., Tseng, R., Zhang, Z., et al. (2009). Circulating heat shock protein 70 and progression in patients with chronic myeloid leukemia. Leukemia Research, 33, 212–217.CrossRefPubMedGoogle Scholar
  126. Yeh, S. L., Yeh, C. L., Chan, S. T., & Chuang, C. H. (2011). Plasma rich in quercetin metabolites induces G2/M arrest by upregulating PPAR-γ expression in human A549 lung cancer cells. Planta Medica, 77, 992–998.CrossRefPubMedGoogle Scholar
  127. Yi, X., Luk, J. M., Lee, N. P., et al. (2008). Association of mortalin (HSPA9) with liver cancer metastasis and prediction for early tumor recurrence. Molecular & Cellular Proteomics, 7, 315–325.CrossRefGoogle Scholar
  128. Yoshida, M., Sakai, T., Hosokawa, N., et al. (1990). The effect of quercetin on cell cycle progression and growth of human gastric cancer cells. FEBS Letters, 260, 10–13.CrossRefPubMedGoogle Scholar
  129. Zhang, J. Y., Yi, T., Liu, J., Zhao, Z. Z., & Chen, H. B. (2013). Quercetin induces apoptosis via the mitochondrial pathway in KB and KBv200 cells. Journal of Agricultural and Food Chemistry, 61, 2188–2195.CrossRefPubMedGoogle Scholar
  130. Zorzi, E., & Bonvini, P. (2011). Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers (Basel), 3, 3921–3956.CrossRefGoogle Scholar
  131. Zuiderweg, E. R., Bertelsen, E. B., Rousaki, A., Mayer, M. P., Gestwicki, J. E., & Ahmad, A. (2013). Allostery in the HSP70 chaperone proteins. Topics in Current Chemistry, 328, 99–153.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Evren Önay Uçar
    • 1
    Email author
  • Aslıhan Şengelen
    • 1
  • Elif Mertoğlu
    • 1
  • Murat Pekmez
    • 1
  • Nazlı Arda
    • 1
  1. 1.Department of Molecular Biology & Genetics, Faculty of ScienceIstanbul UniversityIstanbulTurkey

Personalised recommendations