Heat Shock Protein 70 and Other Heat Shock Proteins in Diseased Retina

  • Ting Zhang
  • Bobak Bahrami
  • Ling ZhuEmail author
Part of the Heat Shock Proteins book series (HESP, volume 14)


Heat shock proteins (HSP) belong to a family of stress-induced proteins essential to cell survival. HSP have multiple protective roles through assistance in protein folding, maintaining mitochondrial homeostasis, suppressing proinflammatory cytokines, resisting ischemic damage and protecting cells from apoptotic and necrotic death. This chapter discusses the important roles of HSP, particularly HSP70 in enhancing the survival of neurons in retinal disease through different pathways. Studies in various retinal cell lines, animal models and human tissue demonstrate altered HSP expression under different stresses and diseases. These findings implicate the critical role of. HSP in the diseased retina as well as providing support for translating the HSP’ cellular defense strategy into therapy to protect and rescue injured retina from different retinal pathology.


Age-related macular degeneration Cell death Diabetic retinopathy Glaucoma Heat shock proteins Inflammation Mitochondria Oxidative stress Protein folding 



age-related macular degeneration


diabetic retinopathy




heat shock proteins


liquid chromatography tandem-mass spectrometry


nuclear factor-κB


retinal ganglion cells


retinal pigment epithelium




tumour necrosis factor


vascular endothelial growth factor



This work was supported in part by the University of Sydney Postgraduate Award (to B. B.) and Early Career Researcher Kick Start Grant from the Balnaves Foundation and Sydney Medical School (to L. Z.)


  1. Aguilà, M., Bevilacqua, D., McCulley, C., et al. (2014). Hsp90 inhibition protects against inherited retinal degeneration. Human Molecular Genetics, 23, 2164–2175.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Arrigo, A. P., Virot, S., Chaufour, S., Firdaus, W., Kretz-Remy, C., & Diaz-Latoud, C. (2005). Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxidants & Redox Signaling, 7, 414–422.CrossRefGoogle Scholar
  3. Augustin, M., Ali Asim Mahar, M., Lakkisto, P., et al. (2011). Heat shock attenuates VEGF expression in three-dimensional myoblast sheets deteriorating therapeutic efficacy in heart failure. Medical Science Monitor, 17, BR345–BR353.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Basu, S., & Srivastava, P. K. (2000). Heat shock proteins: The fountainhead of innate and adaptive immune responses. Cell Stress & Chaperones, 5, 443–451.CrossRefGoogle Scholar
  5. Bernstein, S. L., Liu, A. M., Hansen, B. C., & Somiari, R. I. (2000). Heat shock cognate-70 gene expression declines during normal aging of the primate retina. Investigative Ophthalmology & Visual Science, 41, 2857–2862.Google Scholar
  6. Brenu, E. W., Staines, D. R., Tajouri, L., Huth, T., Ashton, K. J., & Marshall-Gradisnik, S. M. (2013). Heat shock proteins and regulatory T cells. Autoimmune Diseases, 8, 813256.Google Scholar
  7. Brucklacher, R. M., Patel, K. M., VanGuilder, H. D., et al. (2008). Whole genome assessment of the retinal response to diabetes reveals a progressive neurovascular inflammatory response. BMC Medical Genomics, 1, 26.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Buch, H., Vinding, T., La Cour, M., Appleyard, M., Jensen, G. B., & Nielsen, N. V. (2004). Prevalence and causes of visual impairment and blindness among 9980 Scandinavian adults: The Copenhagen City Eye Study. Ophthalmology, 111, 53–61.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Burt, D., Bruno, G., Chaturvedi, N., et al. (2009). Anti-heat shock protein 27 antibody levels and diabetes complications in the EURODIAB study. Diabetes Care, 32, 1269–1271.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Christians, E. S., Zhou, Q., Renard, J., & Benjamin, I. J. (2003). Heat shock proteins in mammalian development. Seminars in Cell & Developmental Biology, 14, 283–290.CrossRefGoogle Scholar
  11. Christians, E. S., Ishiwata, T., & Benjamin, I. J. (2012). Small heat shock proteins in redox metabolism: Implications for cardiovascular diseases. The International Journal of Biochemistry & Cell Biology, 44, 1632–1645.CrossRefGoogle Scholar
  12. Congdon, N., O'Colmain, B., Klaver, C. C., et al. (2004). Causes and prevalence of visual impairment among adults in the United States. Archives of Ophthalmology, 122, 477–485.PubMedCrossRefPubMedCentralGoogle Scholar
  13. de Jong, P. T. (2006). Age-related macular degeneration. The New England Journal of Medicine, 355, 1474–1485.PubMedCrossRefPubMedCentralGoogle Scholar
  14. De, S., Rabin, D. M., Salero, E., Lederman, P. L., Temple, S., & Stern, J. H. (2007). Human retinal pigment epithelium cell changes and expression of alphaB-crystallin: A biomarker for retinal pigment epithelium cell change in age-related macular degeneration. Archives of Ophthalmology, 125, 641–645.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Decanini, A., Nordgaard, C. L., Feng, X., Ferrington, D. A., & Olsen, T. W. (2007). Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. American Journal of Ophthalmology, 143, 607–615.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Deocaris, C. C., Kaul, S. C., & Wadhwa, R. (2006). On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress & Chaperones, 11, 116–128.CrossRefGoogle Scholar
  17. Dillmann, W. H. (1999). Heat shock proteins and protection against ischemic injury. Infectious Diseases in Obstetrics and Gynecology, 7, 55–57.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dong, Z., Kase, S., Ando, R., et al. (2012). Alphab-crystallin expression in epiretinal membrane of human proliferative diabetic retinopathy. Retina, 32, 1190–1196.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ferrington, D. A., Sinha, D., & Kaarniranta, K. (2016). Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Progress in Retinal and Eye Research, 51, 69–89.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Gao, B., & Tsan, M. F. (2004). Induction of cytokines by heat shock proteins and endotoxin in murine macrophages. Biochemical and Biophysical Research Communications, 317, 1149–1154.CrossRefPubMedGoogle Scholar
  21. Gardiner, S. K., Fortune, B., Wang, L., Downs, J. C., & Burgoyne, C. F. (2012). Intraocular pressure magnitude and variability as predictors of rates of structural change in non-human primate experimental glaucoma. Experimental Eye Research, 103, 1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hawkes, E. L., Krueger-Naug, A. M., Nickerson, P. E., Myers, T. L., Currie, R. W., & Clarke, D. B. (2004). Expression of Hsp27 in retinal ganglion cells of the rat during postnatal development. The Journal of Comparative Neurology, 478, 143–148.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Heise, E. A., & Fort, P. E. (2011). Impact of diabetes on alpha-crystallins and other heat shock proteins in the eye. Journal of Ocular Biology Disease Information, 4, 62–69.CrossRefGoogle Scholar
  24. Hooper, P. L., & Hooper, J. J. (2004). Is low-heat shock protein 70 a primary or a secondary event in the development of atherosclerosis? Hypertension, 43, e18–e19. author reply e18-9.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Huang, W., Fileta, J. B., Filippopoulos, T., Ray, A., Dobberfuhl, A., & Grosskreutz, C. L. (2007). Hsp27 phosphorylation in experimental glaucoma. Investigative Ophthalmology & Visual Science, 48, 4129–4135.CrossRefGoogle Scholar
  26. Hubbard, T. J., & Sander, C. (1991). The role of heat-shock and chaperone proteins in protein folding: Possible molecular mechanisms. Protein Engineering, 4, 711–717.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Ishii, Y., Kwong, J. M., & Caprioli, J. (2003). Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Investigative Ophthalmology & Visual Science, 44, 1982–1992.CrossRefGoogle Scholar
  28. Jarrett, S. G., & Boulton, M. E. (2012). Consequences of oxidative stress in age-related macular degeneration. Molecular Aspects of Medicine, 33, 399–417.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Jo, D. H., An, H., Chang, D. J., et al. (2014). Hypoxia-mediated retinal neovascularization and vascular leakage in diabetic retina is suppressed by HIF-1alpha destabilization by SH-1242 and SH-1280, novel hsp90 inhibitors. Journal of Molecular Medicine (Berl), 92, 1083–1092.CrossRefGoogle Scholar
  30. Johnson, P. T., Brown, M. N., Pulliam, B. C., Anderson, D. H., & Johnson, L. V. (2005). Synaptic pathology, altered gene expression, and degeneration in photoreceptors impacted by drusen. Investigative Ophthalmology & Visual Science, 46, 4788–4795.CrossRefGoogle Scholar
  31. Kaarniranta, K., Sinha, D., Blasiak, J., et al. (2013). Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy, 9, 973–984.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kanamaru, C., Yamada, Y., Hayashi, S., et al. (2014). Retinal toxicity induced by small-molecule Hsp90 inhibitors in beagle dogs. The Journal of Toxicological Sciences, 39, 59–69.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kang, G. Y., Bang, J. Y., Choi, A. J., et al. (2014). Exosomal proteins in the aqueous humor as novel biomarkers in patients with neovascular age-related macular degeneration. Journal of Proteome Research, 13, 581–595.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kannan, R., Sreekumar, P. G., & Hinton, D. R. (2016). Alpha crystallins in the retinal pigment epithelium and implications for the pathogenesis and treatment of age-related macular degeneration. Biochimica et Biophysica Acta, 1860, 258–268.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kase, S., He, S., Sonoda, S., et al. (2010). alphaB-crystallin regulation of angiogenesis by modulation of VEGF. Blood, 115, 3398–3406.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kiang, J. G., & Tsokos, G. C. (1998). Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacology & Therapeutics, 80, 183–201.CrossRefGoogle Scholar
  37. Kim, H. J., Kim, P. K., Yoo, H. S., & Kim, C. W. (2012). Comparison of tear proteins between healthy and early diabetic retinopathy patients. Clinical Biochemistry, 45, 60–67.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kim, T. K., Na, H. J., Lee, W. R., Jeoung, M. H., & Lee, S. (2016). Heat shock protein 70-1A is a novel angiogenic regulator. Biochemical and Biophysical Research Communications, 469, 222–228.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kimura, K., Tanaka, N., Nakamura, N., Takano, S., & Ohkuma, S. (2007). Knockdown of mitochondrial heat shock protein 70 promotes progeria-like phenotypes in caenorhabditis elegans. The Journal of Biological Chemistry, 282, 5910–5918.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kivinen, N., Hyttinen, J., Viiri, J. et al. (2014). Hsp70 binds reversibly to proteasome inhibitor–induced protein aggregates and evades autophagic clearance in ARPE-19 cells, Vol. 2.Google Scholar
  41. Kojima, M., Hoshimaru, M., Aoki, T., et al. (1996). Expression of heat shock proteins in the developing rat retina. Neuroscience Letters, 205, 215–217.PubMedCrossRefGoogle Scholar
  42. Koll, H., Guiard, B., Rassow, J., et al. (1992). Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell, 68, 1163–1175.PubMedCrossRefGoogle Scholar
  43. Koriyama, Y., Sugitani, K., Ogai, K., & Kato, S. (2014). Heat shock protein 70 induction by valproic acid delays photoreceptor cell death by N-methyl-N-nitrosourea in mice. Journal of Neurochemistry, 130, 707–719.PubMedCrossRefGoogle Scholar
  44. Kregel, K. C. (2002). Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology (1985), 92, 2177–2186.CrossRefGoogle Scholar
  45. Kumar, D. M., & Agarwal, N. (2007). Oxidative stress in glaucoma: A burden of evidence. Journal of Glaucoma, 16, 334–343.PubMedCrossRefGoogle Scholar
  46. Kumar, P. A., Haseeb, A., Suryanarayana, P., Ehtesham, N. Z., & Reddy, G. B. (2005). Elevated expression of alphaA- and alphaB-crystallins in streptozotocin-induced diabetic rat. Archives of Biochemistry and Biophysics, 444, 77–83.PubMedCrossRefGoogle Scholar
  47. Kurucz, I., Morva, A., Vaag, A., et al. (2002). Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes, 51, 1102–1109.PubMedCrossRefGoogle Scholar
  48. Kwong, J. M., Gu, L., Nassiri, N., et al. (2015). AAV-mediated and pharmacological induction of Hsp70 expression stimulates survival of retinal ganglion cells following axonal injury. Gene Therapy, 22, 138–145.PubMedCrossRefGoogle Scholar
  49. Li, N., Li, Y., & Duan, X. (2014). Heat shock protein 72 confers protection in retinal ganglion cells and lateral geniculate nucleus neurons via blockade of the SAPK/JNK pathway in a chronic ocular-hypertensive rat model. Neural Regeneration Research, 9, 1395–1401.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Liew, G., Michaelides, M., & Bunce, C. (2014). A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open, 4, e004015.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lill, R., & Muhlenhoff, U. (2006). Iron-sulfur protein biogenesis in eukaryotes: Components and mechanisms. Annual Review of Cell and Developmental Biology, 22, 457–486.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Lutjen-Drecoll, E. (2005). Morphological changes in glaucomatous eyes and the role of TGFbeta2 for the pathogenesis of the disease. Experimental Eye Research, 81, 1–4.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Malyshev, I., Manukhina, E. B., Mikoyan, V. D., Kubrina, L. N., & Vanin, A. F. (1995). Nitric oxide is involved in heat-induced HSP70 accumulation. FEBS Letters, 370, 159–162.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Mandal, K., Jahangiri, M., & Xu, Q. (2004). Autoimmunity to heat shock proteins in atherosclerosis. Autoimmunity Reviews, 3, 31–37.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Manicki, M., Majewska, J., Ciesielski, S., et al. (2014). Overlapping binding sites of the frataxin homologue assembly factor and the heat shock protein 70 transfer factor on the Isu iron-sulfur cluster scaffold protein. The Journal of Biological Chemistry, 289, 30268–30278.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Martin, J., Horwich, A. L., & Hartl, F. U. (1992). Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science, 258, 995–998.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Morales, A. V., Hadjiargyrou, M., Díaz, B., Hernández-Sánchez, C., De Pablo, F., & De La Rosa, E. J. (1998). Heat shock proteins in retinal neurogenesis: Identification of the PM1 antigen as the chick Hsc70 and its expression in comparison to that of other chaperones. European Journal of Neuroscience, 10, 3237–3245.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Mullins, R. F., Russell, S. R., Anderson, D. H., & Hageman, G. S. (2000). Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. The FASEB Journal, 14, 835–846.PubMedCrossRefGoogle Scholar
  59. Nahomi, R. B., Palmer, A., Green, K. M., Fort, P. E., & Nagaraj, R. H. (2014). Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1842, 164–174.CrossRefGoogle Scholar
  60. Nakata, K., Crabb, J. W., & Hollyfield, J. G. (2005). Crystallin distribution in Bruch's membrane-choroid complex from AMD and age-matched donor eyes. Experimental Eye Research, 80, 821–826.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Nickells, R. W. (2012). The cell and molecular biology of glaucoma: Mechanisms of retinal ganglion cell death. Investigative Ophthalmology & Visual Science, 53, 2476–2481.CrossRefGoogle Scholar
  62. Nordgaard, C. L., Berg, K. M., Kapphahn, R. J., et al. (2006). Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Investigative Ophthalmology & Visual Science, 47, 815–822.CrossRefGoogle Scholar
  63. Nordgaard, C. L., Karunadharma, P. P., Feng, X., Olsen, T. W., & Ferrington, D. A. (2008). Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Investigative Ophthalmology & Visual Science, 49, 2848–2855.CrossRefGoogle Scholar
  64. Paul, C., Manero, F., Gonin, S., Kretz-Remy, C., Virot, S., & Arrigo, A. P. (2002). Hsp27 as a negative regulator of cytochrome C release. Molecular and Cellular Biology, 22, 816–834.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Pinach, S., Burt, D., Berrone, E., et al. (2013). Retinal heat shock protein 25 in early experimental diabetes. Acta Diabetologica, 50, 579–585.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Piri, N., Kwong, J. M., Gu, L., & Caprioli, J. (2016). Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Progress in Retinal and Eye Research, 52, 22–46.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Plafker, S. M., O’Mealey, G. B., & Szweda, L. I. (2012). Mechanisms for countering oxidative stress and damage in retinal pigment epithelium. International Review of Cell and Molecular Biology, 298, 135–177.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Przyklenk, K., & Kloner, R. A. (1998). Ischemic preconditioning: Exploring the paradox. Progress in Cardiovascular Diseases, 40, 517–547.PubMedCrossRefGoogle Scholar
  69. Qing, G., Duan, X., & Jiang, Y. (2005). Heat shock protein 72 protects retinal ganglion cells in rat model of acute glaucoma. Yan Ke Xue Bao, 21, 163–168.PubMedPubMedCentralGoogle Scholar
  70. Quin, G., Len, A. C., Billson, F. A., & Gillies, M. C. (2007). Proteome map of normal rat retina and comparison with the proteome of diabetic rat retina: New insight in the pathogenesis of diabetic retinopathy. Proteomics, 7, 2636–2650.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Rangasamy, S., McGuire, P. G., & Das, A. (2012). Diabetic retinopathy and inflammation: Novel therapeutic targets. Middle East Africa Journal of Ophthalmology, 19, 52–59.CrossRefGoogle Scholar
  72. Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia, 18, 571–573.CrossRefGoogle Scholar
  73. Ritossa, F. (1996). Discovery of the heat shock response. Cell Stress & Chaperones, 1, 97–98.CrossRefGoogle Scholar
  74. Ryhanen, T., Hyttinen, J. M., Kopitz, J., et al. (2009). Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. Journal of Cellular and Molecular Medicine, 13, 3616–3631.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Sacca, S. C., Izzotti, A., Rossi, P., & Traverso, C. (2007). Glaucomatous outflow pathway and oxidative stress. Experimental Eye Research, 84, 389–399.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Sakai, M., Sakai, H., Nakamura, Y., Fukuchi, T., & Sawaguchi, S. (2003). Immunolocalization of heat shock proteins in the retina of normal monkey eyes and monkey eyes with laser-induced glaucoma. Japanese Journal of Ophthalmology, 47, 42–52.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Sayed, K. M., & Mahmoud, A. A. (2016). Heat shock protein-70 and hypoxia inducible factor-1alpha in type 2 diabetes mellitus patients complicated with retinopathy. Acta Ophthalmologica, 94, e361–e366.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Schlesinger, M. J. (1990). Heat shock proteins. The Journal of Biological Chemistry, 265, 12111–12114.PubMedGoogle Scholar
  79. Schmeer, C., Gamez, A., Tausch, S., Witte, O. W., & Isenmann, S. (2008). Statins modulate heat shock protein expression and enhance retinal ganglion cell survival after transient retinal ischemia/reperfusion in vivo. Investigative Ophthalmology & Visual Science, 49, 4971–4981.CrossRefGoogle Scholar
  80. Sessa, C., Shapiro, G. I., Bhalla, K. N., et al. (2013). First-in-human phase I dose-escalation study of the HSP90 inhibitor AUY922 in patients with advanced solid tumors. Clinical Cancer Research, 19, 3671–3680.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Shaw, P. X., Stiles, T., Douglas, C., et al. (2016). Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Molecular Science, 3, 196–221.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Stojanovski, D., Rissler, M., Pfanner, N., & Meisinger, C. (2006). Mitochondrial morphology and protein import – A tight connection? Biochimica et Biophysica Acta, 1763, 414–421.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Strunnikova, N., Baffi, J., Gonzalez, A., Silk, W., Cousins, S. W., & Csaky, K. G. (2001). Regulated heat shock protein 27 expression in human retinal pigment epithelium. Investigative Ophthalmology & Visual Science, 42, 2130–2138.Google Scholar
  84. Subrizi, A., Toropainen, E., Ramsay, E., Airaksinen, A. J., Kaarniranta, K., & Urtti, A. (2015). Oxidative stress protection by exogenous delivery of rhHsp70 chaperone to the retinal pigment epithelium (RPE), a possible therapeutic strategy against RPE degeneration. Pharmaceutical Research, 32, 211–221.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Szabadkai, G., Bianchi, K., Varnai, P., et al. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. The Journal of Cell Biology, 175, 901–911.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Takayama, S., Reed, J. C., & Homma, S. (2003). Heat-shock proteins as regulators of apoptosis. Oncogene, 22, 9041–9047.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Talla, V., Porciatti, V., Chiodo, V., Boye, S. L., Hauswirth, W. W., & Guy, J. (2014). Gene therapy with mitochondrial heat shock protein 70 suppresses visual loss and optic atrophy in experimental autoimmune encephalomyelitis. Investigative Ophthalmology & Visual Science, 55, 5214–5226.CrossRefGoogle Scholar
  88. Tezel, G., & Wax, M. B. (2000). The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells. The Journal of Neuroscience, 20, 3552–3562.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Tezel, G., Hernandez, R., & Wax, M. B. (2000). Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. Archives of Ophthalmology, 118, 511–518.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Tripathi, R. C., Li, J., Chan, W. F., & Tripathi, B. J. (1994). Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Experimental Eye Research, 59, 723–727.PubMedCrossRefPubMedCentralGoogle Scholar
  91. van Eden, W., van der Zee, R., & Prakken, B. (2005). Heat-shock proteins induce T-cell regulation of chronic inflammation. Nature Reviews. Immunology, 5, 318–330.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Vanmuylder, N., Evrard, L., & Dourov, N. (1997). Strong expression of heat shock proteins in growth plate cartilage, an immunohistochemical study of HSP28, HSP70 and HSP110. Anatomy and Embryology (Berlin), 195, 359–362.CrossRefGoogle Scholar
  93. Voos, W., & Rottgers, K. (2002). Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochimica et Biophysica Acta, 1592, 51–62.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Wadhwa, R., Yaguchi, T., Hasan, M. K., Mitsui, Y., Reddel, R. R., & Kaul, S. C. (2002). Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Experimental Cell Research, 274, 246–253.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Wakakura, M., & Foulds, W. S. (1989). Response of cultured Muller cells to heat shock – An immunocytochemical study of heat shock and intermediate filament proteins in response to temperature elevation. Experimental Eye Research, 48, 337–350.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Wang, G. H., & Xing, Y. Q. (2017). Evaluation of heat shock protein (HSP-72) expression in retinal ganglion cells of rats with glaucoma. Experimental and Therapeutic Medicine, 14, 1577–1581.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Wang, W., Sreekumar, P. G., Valluripalli, V., et al. (2014). Protein polymer nanoparticles engineered as chaperones protect against apoptosis in human retinal pigment epithelial cells. Journal of Controlled Release, 191, 4–14.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Windisch, B. K., LeVatte, T. L., Archibald, M. L., & Chauhan, B. C. (2009). Induction of heat shock proteins 27 and 72 in retinal ganglion cells after acute pressure-induced ischaemia. Clinical & Experimental Ophthalmology, 37, 299–307.CrossRefGoogle Scholar
  99. Wu, W. C., Kao, Y. H., Hu, P. S., & Chen, J. H. (2007). Geldanamycin, a HSP90 inhibitor, attenuates the hypoxia-induced vascular endothelial growth factor expression in retinal pigment epithelium cells in vitro. Experimental Eye Research, 85, 721–731.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Yenari, M. A., Liu, J., Zheng, Z., Vexler, Z. S., Lee, J. E., & Giffard, R. G. (2005). Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Annals of the New York Academy of Sciences, 1053, 74–83.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Yu, A. L., Fuchshofer, R., Birke, M., Kampik, A., Bloemendal, H., & Welge-Lussen, U. (2008). Oxidative stress and TGF-beta2 increase heat shock protein 27 expression in human optic nerve head astrocytes. Investigative Ophthalmology & Visual Science, 49, 5403–5411.CrossRefGoogle Scholar
  102. Zou, J., Guo, Y., Guettouche, T., Smith, D. F., & Voellmy, R. (1998). Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell, 94, 471–480.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China HospitalSichuan UniversityChengduPeople’s Republic of China
  2. 2.Save Sight InstituteThe University of SydneySydneyAustralia

Personalised recommendations