Heat Shock Proteins in Cardiovascular Diseases: From Bench to Bedside

  • Francesca Bonomini
  • Gaia Favero
  • Valentina Trapletti
  • Rita RezzaniEmail author
Part of the Heat Shock Proteins book series (HESP, volume 14)


Heat shock proteins (HSP) are stress proteins induced in response to a wide variety of physiological and environmental insults. HSP function as molecular chaperones and they are required to maintain the proteome in a folded and functional state, allowing the cells to survive stress conditions. These key proteins, which may be located intracellularly or extracellularly, have multiple functions that range from the regulation of essential cells function to the renaturation of misfolded proteins. In the last decades, the HSP involvement in both normal cell function and disease pathogenesis is widely studied, especially in the context of cardiovascular diseases (CVDs). This chapter covers the current knowledge on the function HSP in the cardiovascular system and particular in the relationship between these proteins and CVDs. Initially, the roles of HSP in cardiovascular health are outlined, followed by an evaluation of the role of HSP in CVDs key processes, such as atherosclerosis, vascular hypertrophy and heart failure. Finally, the therapeutic potential of roles HSP are examined in a CVDs context, considering how the knowledge actually gained may be capitalized in future clinical studies.


Cardiovascular diseases Heat shock proteins Hsp40 Hsp60 Hsp70 Hsp90 Small heat shock proteins Therapeutics 



apoptosis inducing factor


apolipoproteinE knock out mice






cardiovascular diseases




heat shock elements


heat transcription factor 1


heat shock protein


low-density lipoprotein-cholesterol


remote ischemic preconditioning


reactive oxygen species


small heat shock protein


soluble heat shock protein60


smooth muscle cells


toll-like receptors 4


vascular smooth muscle cells



This study was supported by the grant (ex-60%) of the University of Brescia, Italy. The Authors sincerely thanks also Fondazione Cariplo e Regione Lombardia “New opportunities and ways towards ERC” (Project 2014-2256).


  1. Amour, J., Brzezinska, A. K., Weihrauch, D., et al. (2009). Role of heat shock protein 90 and endothelial nitric oxide synthase during early anaesthetic and ischemic preconditioning. Anesthesiology, 110, 317–325.PubMedPubMedCentralGoogle Scholar
  2. Anckar, J., & Sistonen, L. (2011). Regulation of HSF1 function in the heat stress response: Implications in aging and disease. Annual Review of Biochemistry, 80, 1089–1115.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arrigo, A. P., Virot, S., Chaufour, S., et al. (2005). Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxidants & Redox Signaling, 7, 414–422.CrossRefGoogle Scholar
  4. Baruah, K., Norouzitallab, P., Linayati, L., et al. (2014). Reactive oxygen species generated by a heat shock protein (Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios. Developmental and Comparative Immunology, 46, 470–474.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Basha, E., Friedrich, K. L., & Vierling, E. (2006). The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. The Journal of Biological Chemistry, 281, 39943–39952.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Boluyt, M. O., Brevick, J. L., Rogers, D. S., et al. (2006). Changes in the rat heart proteome induced by exercise training: Increased abundance of heat shock protein hsp20. Proteomics, 6, 3154–3169.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Boncoraglio, A., Minoia, M., & Carra, S. (2012). The family of mammalian small heat shock proteins (HSPBs): Implications in protein deposit diseases and motor neuropathies. The International Journal of Biochemistry & Cell Biology, 44, 1657–1669.CrossRefGoogle Scholar
  8. Bond, U., & Schlesinger, M. J. (1985). Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Molecular and Cellular Biology, 5, 949–956.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bova, M. P., Yaron, O., Huang, Q., et al. (1999). Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proceedings of the National Academy of Sciences of the United States of America, 96, 6137–6142.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brundel, B. J., Henning, R. H., Ke, L., et al. (2006a). Heat shock protein upregulation protects against pacing- induced myolysis in HL-1 atrial myocytes and in human atrial fibrillation. Journal of Molecular and Cellular Cardiology, 41, 555–562.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brundel, B. J., Shiroshita-Takeshita, A., Qi, X., et al. (2006b). Induction of heat shock response protects the heart against atrial fibrillation. Circulation Research, 99, 1394–1402.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Budas, G. R., Churchill, E. N., Disatnik, M. H., et al. (2010). Mitochondrial import of PKCepsilon is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury. Cardiovascular Research, 88, 83–92.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bullard, B., Ferguson, C., Minajeva, A., et al. (2004). Association of the chaperone alphaB-crystallin with titin in heart muscle. The Journal of Biological Chemistry, 279, 7917–7924.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Burian, K., Kis, Z., Virok, D., et al. (2001). Independent and joint effects of antibodies to human heat-shock protein 60 and Chlamydia pneumoniae infection in the development of coronary atherosclerosis. Circulation, 103, 1503–1508.PubMedCrossRefGoogle Scholar
  15. Burniston, J. G. (2009). Adaptation of the rat cardiac proteome in response to intensity-controlled endurance exercise. Proteomics, 9, 106–115.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Businaro, R., Profumo, E., Tagliani, A., et al. (2009). Heat-shock protein 90: A novel autoantigen in human carotid atherosclerosis. Atherosclerosis, 207, 74–83.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Campos, J. C., Queliconi, B. B., Dourado, P. M., et al. (2012). Exercise training restores cardiac protein quality control in heart failure. PLoS One, 7, e52764.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carra, S., Seguin, S. J., Lambert, H., et al. (2008a). HspB8 chaperone activity toward poly (Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. The Journal of Biological Chemistry, 283, 1437–1444.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Carra, S., Seguin, S. J., & Landry, J. (2008b). HspB8 and Bag3: A new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy, 4, 237–239.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Carra, S., Brunsting, J. F., Lambert, H., et al. (2009). HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2 {alpha} phosphorylation. The Journal of Biological Chemistry, 284, 5523–5532.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Carra, S., Alberti, S., Arrigo, P. A., et al. (2017). The growing world of small heat shock proteins: From structure to functions. Cell Stress & Chaperones, 22, 601–611.CrossRefGoogle Scholar
  22. Chang, S. L., Chen, Y. C., Hsu, C. P., et al. (2013). Heat shock protein inducer modifies arrhythmogenic substrate and inhibits atrial fibrillation in the failing heart. International Journal of Cardiology, 168, 4019–4026.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Charmpilas, N., Kyriakakis, E., & Tavernarakis, N. (2017). Small heat shock proteins in ageing and age-related diseases. Cell Stress & Chaperones, 22, 481–492.CrossRefGoogle Scholar
  24. Chebotareva, N., Bobkova, I., & Shilov, E. (2017). Heat shock proteins and kidney disease: Perspectives of HSP therapy. Cell Stress & Chaperones, 22, 319–343.CrossRefGoogle Scholar
  25. Chen, Y. S., Chien, C. T., Ma, M. C., et al. (2005). Protection “outside the box” (skeletal remote preconditioning) in rat model is triggered by free radical pathway. The Journal of Surgical Research, 126, 92–101.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chen, L., Lizano, P., Zhao, X., et al. (2011). Preemptive conditioning of the swine heart by H11 kinase/Hsp22 provides cardiac protection through inducible nitric oxide synthase. American Journal of Physiology. Heart and Circulatory Physiology, 300, H1303–H1310.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen, Y., Jiang, B., Zhuang, Y., et al. (2017). Differential effects of heat shock protein 90 and serine 1179 phosphorylation on endothelial nitric oxide synthase activity and on its cofactors. PLoS One, 12, e0179978.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Choudhury, S., Bae, S., Ke, Q., et al. (2011). Mitochondria to nucleus translocation of AIF in mice lacking Hsp70 during ischemia/reperfusion. Basic Research in Cardiology, 106, 397–407.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Clark, A. R., Lubsen, N. H., & Slingsby, C. (2012). sHSP in the eye lens: Crystallin mutations, cataract and proteostasis. The International Journal of Biochemistry & Cell Biology, 44, 1687–1697.CrossRefGoogle Scholar
  30. Cohen, I. R., & Young, D. B. (1991). Autoimmunity, microbial immunity and the immunological homunculus. Immunology Today, 12, 105–110.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Connarn, J. N., Assimon, V. A., Reed, R. A., et al. (2014). The molecular chaperone Hsp70 activates protein phosphatase 5 (PP5) by binding the tetratricopeptide repeat (TPR) domain. The Journal of Biological Chemistry, 289, 2908–2917.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Craig, E. A., Weissman, J. S., & Horwich, A. L. (1994). Heat shock proteins and molecular chaperones: Mediators of protein conformation and turnover in the cell. Cell, 78, 365–372.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Crul, T., Toth, N., Piotto, S., et al. (2013). Hydroximic acid derivatives: Pleiotropic HSP co-inducers restoring homeostasis and robustness. Current Pharmaceutical Design, 19, 309–346.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Csermely, P., Schnaider, T., Soti, C., et al. (1998). The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacology & Therapeutics, 79, 129–168.CrossRefGoogle Scholar
  35. Cudkowicz, M. E., Shefner, J. M., Simpson, E., et al. (2008). Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in amyotrophic lateral sclerosis. Muscle & Nerve, 38, 837–844.CrossRefGoogle Scholar
  36. de Graaf, R., Kloppenburg, G., Kitslaar, P. J., et al. (2006). Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll-like receptors 2 and 4. Microbes and Infection, 8, 1859–1865.PubMedCrossRefPubMedCentralGoogle Scholar
  37. de Moraes, W. M., Melara, T. P., de Souza, P. R., et al. (2015). Impact of leucine supplementation on exercise training induced anti-cardiac remodeling effect in heart failure mice. Nutrients, 7, 3751–3766.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Deane, C. A., & Brown, I. R. (2016). Induction of heat shock proteins in differentiated human neuronal cells following co-application of celastrol and arimoclomol. Cell Stress & Chaperones, 21, 837–848.CrossRefGoogle Scholar
  39. Depre, C., Hase, M., Gaussin, V., et al. (2002). H11 kinase is a novel mediator of myocardial hypertrophy in vivo. Circulation Research, 91, 1007–1014.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Depre, C., Wang, L., Sui, X., et al. (2006). H11 kinase prevents myocardial infarction by preemptive preconditioning of the heart. Circulation Research, 98, 280–288.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Doran, P., Gannon, J., O’Connell, K., et al. (2007). Aging skeletal muscle shows a drastic increase in the small heat shock proteins alphaB-crystallin/HspB5 and cvHsp/HspB7. European Journal of Cell Biology, 86, 629–640.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Dybdahl, B., Slørdahl, S. A., Waage, A., et al. (2005). Myocardial ischaemia and the inflammatory response: Release of heat shock protein 70 after myocardial infarction. Heart, 91, 299–304.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Edwards, H. V., Cameron, R. T., & Baillie, G. S. (2011). The emerging role of HSP20 as a multifunctional protective agent. Cellular Signalling, 23, 1447–1454.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Fan, G. C., Chu, G., Mitton, B., et al. (2004). Small heat-shock protein Hsp20 phosphorylation inhibits beta-agonist-induced cardiac apoptosis. Circulation Research, 94, 1474–1482.PubMedCrossRefGoogle Scholar
  45. Fan, G. C., Ren, X., Qian, J., et al. (2005). Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusion injury. Circulation, 111, 1792–1799.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Feng, Y., Huang, W., Meng, W., et al. (2014). Heat shock improves Sca-1 + stem cell survival and directs ischemic cardiomyocytes toward a pro survival phenotype via exosomal transfer: A critical role for HSF1/miR-34a/HSP70 pathway. Stem Cells, 32, 462–472.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Fontaine, J. M., Rest, J. S., Welsh, M. J., et al. (2003). The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins. Cell Stress & Chaperones, 8, 62–69.CrossRefGoogle Scholar
  48. Franklin, T. B., Krueger-Naug, A. M., Clarke, D. B., et al. (2005). The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. International Journal of Hyperthermia, 21, 379–392.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Frostegård, J., Zhang, Y., Sun, J., et al. (2016). Oxidized low-density lipoprotein (OxLDL)-treated dendritic cells promote activation of T cells in human atherosclerotic plaque and blood, which is repressed by statins: MicroRNA let-7c is integral to the effect. J Am Heart Assoc, 5, e003976.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fukuoka, K., Sawabe, A., & Sugimoto, T. (2004). Inhibitory actions of several natural products on proliferation of rat vascular smooth muscle cells induced by Hsp60 from Chlamydia pneumoniae J138. Journal of Agricultural and Food Chemistry, 52, 6326–6329.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Fuster, V., Badimon, L., Badimon, J. J., et al. (1992a). The pathogenesis of coronary artery disease and the acute coronary syndromes (1). The New England Journal of Medicine, 326, 242–250.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Fuster, V., Badimon, L., Badimon, J. J., et al. (1992b). The pathogenesis of coronary artery disease and the acute coronary syndromes (2). The New England Journal of Medicine, 326, 310–318.PubMedCrossRefGoogle Scholar
  53. Gabai, V. L., Meriin, A. B., Yaglom, J. A., et al. (2000). Suppression of stress kinase JNK is involved in HSP72-mediated protection of myogenic cells from transient energy deprivation. HSP72 alleviates the stress-induced inhibition of JNK dephosphorylation. The Journal of Biological Chemistry, 275, 38088–38094.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Garrido, C., Brunet, M., Didelot, C., et al. (2006). Heat shock proteins 27 and 70: Anti-apoptotic proteins with tumorigenic properties. Cell Cycle, 5, 2592–2601.CrossRefPubMedGoogle Scholar
  55. Gething, M. J., & Sambrook, J. (1992). Protein folding in the cell. Nature, 355, 33–45.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ghayour-Mobarhan, M., Lamb, D. J., Tavallaie, S., et al. (2007). Relationship between plasma cholesterol, von Willebrand factor concentrations, extent of atherosclerosis and antibody titers to heat shock proteins-60, -65 and -70 in cholesterol-fed rabbits. International Journal of Experimental Pathology, 88, 249–255.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ghayour-Mobarhan, M., Saber, H., & Ferns, G. A. (2012). The potential role of heat shock protein 27 in cardiovascular disease. Clinica Chimica Acta, 413, 15–24.CrossRefGoogle Scholar
  58. Ghosh, J. G., Houck, S. A., & Clark, J. I. (2007). Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly. PLoS One, 2, e498.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Golenhofen, N., Perng, M. D., Quinlan, R. A., et al. (2004). Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochemistry and Cell Biology, 122, 415–425.PubMedCrossRefGoogle Scholar
  60. Golenhofen, N., Redel, A., Wawrousek, E. F., et al. (2006). Ischemia- induced increase of stiffness of alphaB-crystallin/HSPB2-deficient myocardium. Pflügers Archiv, 451, 518–525.PubMedCrossRefGoogle Scholar
  61. Grose, J. H., Langston, K., Wang, X., et al. (2015). Characterization of the cardiac overexpression of HSPB2 reveals mitochondrial and myogenic roles supported by a cardiac HspB2 interactome. PLoS One, 10, e0133994.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gupta, S., & Knowlton, A. A. (2007). HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. American Journal of Physiology. Heart and Circulatory Physiology, 292, H3052–H3056.PubMedCrossRefGoogle Scholar
  63. Gurbuxani, S., Schmitt, E., & Cande, C. (2003). Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene, 22, 6669–6678.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Gwag, T., Park, K., Kim, E., et al. (2013). Inhibition of C2C12 myotube atrophy by a novel HSP70 inducer, celastrol, via activation of Akt1 and ERK1/2 pathways. Archives of Biochemistry and Biophysics, 537, 21–30.PubMedCrossRefGoogle Scholar
  65. Harris, M. B., & Starnes, J. W. (2001). Effects of body temperature during exercise training on myocardial adaptations. American Journal of Physiology. Heart and Circulatory Physiology, 280, H2271–H2280.PubMedCrossRefGoogle Scholar
  66. Hattori, K., Ozaki, Y., Ismail, T. F., et al. (2012). Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter-IVUS. JACC Cardiovascular Imaging, 5, 169–177.PubMedCrossRefGoogle Scholar
  67. Hayashi, M., Imanaka-Yoshida, K., et al. (2006). A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nature Medicine, 12, 128–132.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Hedhli, N., Lizano, P., Hong, C., et al. (2008). Proteasome inhibition decreases cardiac remodeling after initiation of pressure overload. American Journal of Physiology. Heart and Circulatory Physiology, 295, H1385–H1393.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Henderson, B., & Pockley, A. G. (2012). Proteotoxic stress and circulating cell stress proteins in the cardiovascular diseases. Cell Stress & Chaperones, 17, 303–311.CrossRefGoogle Scholar
  70. Hirakawa, T., Rokutan, K., Nikawa, T., et al. (1996). Geranylgeranylacetone induces heat shock proteins in cultured guinea pig gastric mucosal cells and rat gastric mucosa. Gastroenterology, 111, 345–357.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Hu, X., Van Marion, D. M. S., Wiersma, M., et al. (2017). The protective role of small heat shock proteins in cardiac diseases: Key role in atrial fibrillation. Cell Stress & Chaperones, 22, 665–674.CrossRefGoogle Scholar
  72. Ishiwata, T., Orosz, A., Wang, X., et al. (2012). HSPB2 is dispensable for the cardiac hypertrophic response but reduces mitochondrial energetics following pressure overload in mice. PLoS One, 7, e42118.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Jee, H. (2016). Size dependent classification of heat shock proteins: A mini-review. Journal Exercise Rehabilitation, 12, 255–259.CrossRefGoogle Scholar
  74. Jessup, M., Greenberg, B., Mancini, D., et al. (2011). Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID) investigators. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): A phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation, 124, 304–313.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jimenez, S. K., Small, B. A., Hsu, A. K., et al. (2014). Heat shock proteins HSP90 and HSP70 mediate opioid- and GSK3β-induced cardioprotection. Circulation Research, 115, 340.Google Scholar
  76. Johnson, A. D., Berberian, P. A., Tytell, M., et al. (1993). Atherosclerosis alters the localization of HSP70 in human and macaque aortas. Experimental and Molecular Pathology, 58, 155–168.PubMedCrossRefGoogle Scholar
  77. Kampinga, H. H., & Craig, E. A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews Molecular Cell Biology, 11, 579–592.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kappe, G., Franck, E., Verschuure, P., et al. (2003). The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress & Chaperones, 8, 53–61.CrossRefGoogle Scholar
  79. Kessing, D., Denollet, J., Widdershoven, J., et al. (2016). Self-care and all-cause mortality in patients with chronic heart failure. JACC Heart Failure, 4, 176–183.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Khalil, A. A., Kabapy, N. F., Deraz, S. F., et al. (2011). Heat shock proteins in oncology: Diagnostic biomarkers or therapeutic targets? Biochimica et Biophysica Acta, 1816, 89–104.PubMedPubMedCentralGoogle Scholar
  81. Khan, I. U., Wallin, R., Gupta, R. S., et al. (1998). Protein kinase A-catalyzed phosphorylation of heat shock protein 60 chaperone regulates its attachment to histone 2B in the T lymphocyte plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 95, 10425–10430.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kieran, D., Kalmar, B., Dick, J. R., et al. (2004). Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nature Medicine, 10, 402–405.CrossRefPubMedGoogle Scholar
  83. Kim, K. K., Kim, R., & Kim, S. H. (1998). Crystal structure of a small heat-shock protein. Nature, 394, 595–599.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kirkegaard, T., Gray, J., Priestman, D. A., et al. (2016). Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Science Translational Medicine, 8, 355ra118.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Kleindienst, R., Xu, Q., Willeit, J., et al. (1993). Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. The American Journal of Pathology, 142, 1927–1937.PubMedPubMedCentralGoogle Scholar
  86. Kliková, K., Pilchova, I., Stefanikova, A., et al. (2016). The role of heat shock proteins in leukemia. Klinická Onkologie, 29, 29–38.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Knowlton, A. A., Kapadia, S., & Torre-Amione, G. (1998). Differential expression of heat shock proteins in normal and failing human hearts. Journal of Molecular and Cellular Cardiology, 30, 811–818.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Komukai, K., Kubo, T., Kitabata, H., et al. (2014). Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: The EASY-FIT study. Journal of the American College of Cardiology, 64, 2207–2217.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kupatt, C., Dessy, C., Hinkel, R., et al. (2004). Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphorylation and threonine 495 dephosphorylation. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1435–1441.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lamb, D. J., El-Sankary, W., & Ferns, G. A. (2002). Molecular mimicry in atherosclerosis: A role for heat shock proteins in immunization. Atherosclerosis, 167, 177–185.CrossRefGoogle Scholar
  91. Lambert, H., Charette, S. J., Bernier, A. F., et al. (1999). HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. The Journal of Biological Chemistry, 274, 9378–9385.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lanka, V., Wieland, S., Barber, J., et al. (2009). Arimoclomol: A potential therapy under development for ALS. Expert Opinion on Investigational Drugs, 18, 1907–1918.PubMedCrossRefGoogle Scholar
  93. Lee, J. H., Koo, T. H., Yoon, H., et al. (2006). Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochemical Pharmacology, 72, 1311–1321.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Li, Y., Si, R., Feng, Y., et al. (2011). Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4. The Journal of Biological Chemistry, 286, 31308–31319.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lin, L., Kim, S. C., Wang, Y., et al. (2007). HSP60 in heart failure: Abnormal distribution and role in cardiac myocyte apoptosis. American Journal of Physiology. Heart and Circulatory Physiology, 293, H2238–H2247.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Madamanchi, N. R., Patterson, C., Li, S., & Runge, S. M. (2001). Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 321–326.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Malik, Z. A., Kott, K. S., Poe, A. J., et al. (2013). Cardiac myocyte exosomes: Stability, HSP60, and proteomics. American Journal of Physiology Heart and Circulatory Physiology, 304, H954–H965.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mamipour, M., Yousefi, M., & Hasanzadeh, M. (2017). An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding. International Journal of Biological Macromolecules, 102, 367–375.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Marber, M. S., Latchman, D. S., Walker, J. M., et al. (1993). Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation, 88, 1264–1272.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Martin, T. P., Currie, S., & Baillie, G. S. (2014). The cardioprotective role of small heat-shock protein 20. Biochemical Society Transactions, 42, 270–273.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Martin-Ventura, J. L., Duran, M. C., Blanco-Colio, L. M., et al. (2004). Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation, 110, 2216–2219.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Marunouchi, T., Inomata, S., Sanbe, A., et al. (2014). Protective effect of geranylgeranylacetone via enhanced induction of HSPB1 and HSPB8 in mitochondria of the failing heart following myocardial infarction in rats. European Journal of Pharmacology, 730, 140–147.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Mayr, M., Metzler, B., Kiechl, S., et al. (1999). Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae: Immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Circulation, 99, 1560–1566.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Mazzaferro, V., Coppa, J., Carrabba, M. G., et al. (2003). Vaccination with autologous tumor-derived heat-shock protein gp96after liver resection for metastatic colorectal cancer. Clinical Cancer Research, 9, 3235–3245.PubMedPubMedCentralGoogle Scholar
  105. Mu, H., Wang, L., & Zhao, L. (2017). HSP90 inhibition suppresses inflammatory response and reduces carotid atherosclerotic plaque formation in ApoE mice. Cardiovascular Therapy, 35(2), 1–9.CrossRefGoogle Scholar
  106. Multhoff, G., Pockley, A. G., Schmida, T. E., et al. (2015). The role of heat shock protein 70 (Hsp70) in radiation-induced immunomodulation. Cancer Letters, 368, 179–184.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Nakagawa, M., Tsujimoto, N., Nakagawa, H., et al. (2001). Association of HSPB2, a member of the small heat shock protein family, with mitochondria. Experimental Cell Research, 271, 161–168.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Nakai, A., & Ishikawa, T. (2001). Cell cycle transition under stress conditions controlled by vertebrate heat shock factors. The EMBO Journal, 20, 2885–2895.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Neef, D. W., Jaeger, A. M., & Thiele, D. J. (2011). Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nature Reviews Drug Discovery, 10, 930–944.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Noguchi, T., Tanaka, A., Kawasaki, T., et al. (2015). Effect of intensive statin therapy on coronary high-intensity plaques detected by noncontrast T1-weighted imaging: The AQUAMARINE pilot study. Journal of the American College of Cardiology, 66, 245–256.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Ooie, T., Takahashi, N., Saikawa, T., et al. (2001). Single oral dose of geranylgeranylacetone induces heat-shock protein 72 and renders protection against ischemia/reperfusion injury in rat heart. Circulation, 104, 1837–1843.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Panneerselvam, L., Raghunath, A., & Perumal, E. (2017). Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride. Cell Stress Chaperones, 22, 743–750. [Epub ahead of print].PubMedPubMedCentralCrossRefGoogle Scholar
  113. Parfitt, D. A., Aguila, M., McCulley, C. H., et al. (2014). The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Cell Death & Disease, 5, e1236.CrossRefGoogle Scholar
  114. Pearl, L. H., & Prodromou, C. (2001). Structure, function, and mechanism of the Hsp90 molecular chaperone. Advances in Protein Chemistry, 59, 157–186.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Perng, M. D., Cairns, L., van den Ijssel, P., et al. (1999). Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. Journal of Cell Science, 112, 2099–2112.PubMedPubMedCentralGoogle Scholar
  116. Pfister, G., Stroh, C. M., & Perschinka, H. (2005). Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. Journal of Cell Science, 118, 1587–1594.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Picard, D. (2002). Heat-shock protein 90, a chaperone for folding and regulation. Cellular and Molecular Life Sciences, 59, 1640–1648.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Pipkin, W., Johnson, J. A., Creazzo, T. L., et al. (2003). Localization, macromolecular associations, and function of the small heat shock-related protein HSP20 in rat heart. Circulation, 107, 469–476.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Pockley, A. G. (2002). Heat shock proteins, inflammation, and cardiovascular disease. Circulation, 105, 1012–1017.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Pockley, A. G., Georgiades, A., Thulin, T., et al. (2003). Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension, 42, 235–238.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Powers, S. K., Lennon, S. L., Quindry, J., et al. (2002). Exercise and cardioprotection. Current Opinion in Cardiology, 17, 495–502.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Pratt, W. B., & Toft, D. O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Experimental Biology and Medicine (Maywood, N.J.), 228, 111–133.CrossRefGoogle Scholar
  123. Prohászka, Z., Duba, J., Horváth, L., et al. (2001). Comparative study on antibodies to human and bacterial 60 kDa heat shock proteins in a large cohort of patients with coronary heart disease and healthy subjects. European Journal of Clinical Investigation, 31, 285–292.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Puato, M., Faggin, E., Rattazzi, M., et al. (2010). Atorvastatin reduces macrophage accumulation in atherosclerotic plaques: A comparison of a nonstatin-based regimen in patients undergoing carotid endarterectomy. Stroke, 41, 1163–1168.PubMedCrossRefGoogle Scholar
  125. Qian, J., Ren, X., Wang, X., et al. (2009). Blockade of Hsp20 phosphorylation exacerbates cardiac ischemia/reperfusion injury by suppressed autophagy and increased cell death. Circulation Research, 105, 1223–1231.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Qian, J., Vafiadaki, E., Florea, S. M., et al. (2011). Small heat shock protein 20 interacts with protein phosphatase-1 and enhances sarcoplasmic reticulum calcium cycling. Circulation Research, 108, 1429–1438.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Qiu, H., Lizano, P., Laure, L., et al. (2011). H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload. Circulation, 124, 406–415.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Rayner, K., Chen, Y. X., McNulty, M., et al. (2008). Extracellular release of the atheroprotective heat shock protein 27 is mediated by estrogen and competitively inhibits acLDL binding to scavenger receptor-A. Circulation Research, 103, 133–141.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Richter, K., & Buchner, J. (2001). Hsp90: Chaperoning signal transduction. Journal of Cellular Physiology, 188, 281–290.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Rigano, R., Profumo, E., Buttari, B., et al. (2007). Heat shock proteins and autoimmunity in patients with carotid atherosclerosis. Annals of the New York Academy of Sciences, 1107, 1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Rinaldi, B., Corbi, G., Boccuti, S., et al. (2006). Exercise training affects age-induced changes in SOD and heat shock protein expression in rat heart. Experimental Gerontology, 41, 764–770.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Ritossa, F. (1962). A new puffing pattern induced by heat shock and DNP in drosophila. Experientia, 18, 571–573.CrossRefGoogle Scholar
  133. Sakamoto, M., Minamino, T., Toko, H., et al. (2006). Upregulation of heat shock transcription factor 1 plays a critical role in adaptive cardiac hypertrophy. Circulation Research, 99, 1411–1418.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Sassa, H., Takaishi, Y., & Terada, H. (1990). The triterpene celastrol as a very potent inhibitor of lipid peroxidation in mitochondria. Biochemical Biophysical Research Communications, 172, 890–897.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Sasu, S., LaVerda, D., Qureshi, N., et al. (2001). Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circulation Research, 89, 244–250.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Schönbeck, U., & Libby, P. (2004). Inflammation, immunity, and HMG-CoA reductase inhibitors: Statins as antiinflammatory agents? Circulation, 109, II18–II26.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Seibert, T. A., Hibbert, B., Chen, Y. X., et al. (2013). Serum heat shock protein 27 levels represent a potential therapeutic target for atherosclerosis: Observations from a human cohort and treatment of female mice. Journal of the American College of Cardiology, 62, 1446–1454.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Selcen, D., & Engel, A. G. (2003). Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations. Annals of Neurology, 54, 804–810.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Singh, L., Randhawa, P. K., Singh, N., et al. (2017). Redox signaling in remote ischemic preconditioning-induced cardioprotection: Evidences and mechanisms. European Journal of Pharmacology, 809, 151–155.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Smith, S. C., Jr., Benjamin, E. J., Bonow, R. O., et al. (2011). AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association. Journal of the American College of Cardiology, 58, 2432–2446.PubMedCrossRefGoogle Scholar
  141. Sreedhar, A. S., Kalmár, E., Csermely, P., et al. (2004). Hsp90 isoforms: Functions, expression and clinical importance. FEBS Letters, 562, 11–15.PubMedCrossRefGoogle Scholar
  142. Sugiyama, Y., Suzuki, A., Kishikawa, M., et al. (2000). Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. The Journal of Biological Chemistry, 275, 1095–1104.PubMedCrossRefGoogle Scholar
  143. Suzuki, A., Sugiyama, Y., Hayashi, Y., et al. (1998). MKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. The Journal of Cell Biology, 140, 1113–1124.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Trott, A., West, J. D., Klaić, L., et al. (2008). Activation of heat shock and antioxidant responses by the natural product celastrol: Transcriptional signatures of a thiol-targeted molecule. Molecular Biology of the Cell, 19, 1104–1112.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Uchiyama, T., Atsuta, H., Utsugi, T., et al. (2007). HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function). Atherosclerosis, 190, 321–329.PubMedCrossRefGoogle Scholar
  146. van de Klundert, F. A., Gijsen, M. L., van den Ijssel, P. R., et al. (1998). alpha B-crystallin and hsp25 in neonatal cardiac cells-differences in cellular localization under stress conditions. European Journal of Cell Biology, 75, 38–45.PubMedCrossRefGoogle Scholar
  147. Van Montfort, R. L., Basha, E., Friedrich, K. L., et al. (2001a). Crystal structure and assembly of a eukaryotic small heat shock protein. Nature Structural Biology, 8, 1025–1030.PubMedCrossRefGoogle Scholar
  148. Van Montfort, R., Slingsby, C., & Vierling, E. (2001b). Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Advances in Protein Chemistry, 59, 105–156.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Veres, A., Füst, G., Smieja, M., et al. (2002). Heart Outcomes Prevention Evaluation (HOPE) study investigators. Relationship of anti-60 kDa heat shock protein and anti-cholesterol antibodies to cardiovascular events. Circulation, 106, 2775–2780.PubMedCrossRefGoogle Scholar
  150. Verschuure, P., Tatard, C., Boelens, W. C., et al. (2003). Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. European Journal of Cell Biology, 82, 523–530.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Vicart, P., Caron, A., Guicheney, P., et al. (1998). A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nature Genetics, 20, 92–95.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Vicencio, J. M., Yellon, D. M., Sivaraman, V., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65, 1525–1536.PubMedCrossRefGoogle Scholar
  153. Vígh, L., Literáti, P. N., Horváth, I., et al. (1997). Bimoclomol: A nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nature Medicine, 3, 1150–1154.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Vos, M. J., Hageman, J., Carra, S., et al. (2008). Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry, 47, 7001–7011.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Vos, M. J., Kanon, B., & Kampinga, H. H. (2009). HSPB7 is a SC35 speckle resident small heat shock protein. Biochimica et Biophysica Acta, 1793, 1343–1353.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Vos, M. J., Zijlstra, M. P., & Kanon, B. (2010). HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Human Molecular Genetics, 19, 4677–4693.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Vos, M. J., Zijlstra, M. P., Carra, S., et al. (2011). Small heat shock proteins, protein degradation and protein aggregation diseases. Autophagy, 7, 101–103.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Wang, W., Peng, Y., Wang, Y., et al. (2009). Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway. Clinical and Experimental Pharmacology & Physiology, 36, 899–903.CrossRefGoogle Scholar
  159. Wang, Y., Chen, L., Hagiwara, N., et al. (2010). Regulation of heat shock protein 60 and 72 expression in the failing heart. Journal of Molecular and Cellular Cardiology, 48, 360–366.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Wei, H., Campbell, W., & Vander Heide, R. S. (2006). Heat shock-induced cardioprotection activates cytoskeletal-based cell survival pathways. American Journal of Physiology. Heart and Circulatory Physiology, 291, H638–H647.PubMedCrossRefGoogle Scholar
  161. Weintraub, N. L., & Rubinstein, J. (2013). Cooling the fire of atherosclerosis with heat shock protein 27. Journal of the American College of Cardiology, 62, 1455–1456.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Weintraub, W. S., Daniels, S. R., Burke, L. E., et al. (2011). Value of primordial and primary prevention for cardiovascular disease: A policy statement from the American Heart Association. Circulation, 124, 967–990.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Westerheide, S. D., Bosman, J. D., Mbadugha, B. N., et al. (2004). Celastrols as inducers of the heat shock response and cytoprotection. The Journal of Biological Chemistry, 279, 56053–56060.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Westerheide, S. D., Raynes, R., Powell, C., et al. (2012). HSF transcription factor family, heat shock response, and protein intrinsic disorder. Current Protein & Peptide Science, 13, 86–103.CrossRefGoogle Scholar
  165. Willis, M. S., & Patterson, C. (2010). Hold me tight: Role of the heat shock protein family of chaperones in cardiac disease. Circulation, 122, 1740–1751.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Wu, K., Xu, W., You, Q., et al. (2012). Increased expression of heat shock protein 90 under chemical hypoxic conditions protects cardiomyocytes against injury induced by serum and glucose deprivation. International Journal of Molecular Medicine, 30, 1138–1144.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Xiao, Q., Mandal, K., Schett, G., et al. (2005). Association of serum-soluble heat shock protein 60 with carotid atherosclerosis: Clinical significance determined in a follow-up study. Stroke, 36, 2571–2576.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Xu, Q., Schett, G., Perschinka, H., et al. (2000). Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation, 102, 14–20.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Zhang, X., Min, X., Li, C., et al. (2010). Involvement of reductive stress in the cardiomyopathy in transgenic mice with cardiac-specific overexpression of heat shock protein 27. Hypertension, 55, 1412–1417.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Zhang, C., Liu, X., Miao, J., et al. (2017). Heat shock protein 70 protects cardiomyocytes through suppressing SUMOylation and nucleus translocation of phosphorylated eukaryotic elongation factor 2 during myocardial ischemia and reperfusion. Apoptosis, 22, 608–625.PubMedCrossRefPubMedCentralGoogle Scholar
  171. Zhao, Y., Zhang, C., Wei, X., et al. (2015). Heat shock protein 60 stimulates the migration of vascular smooth muscle cells via Toll-like receptor 4 and ERK MAPK activation. Scientific Reports, 5, 15352.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Zhong, G. Q., Tu, R. H., Zeng, Z. Y., et al. (2014). Novel functional role of heat shock protein 90 in protein kinase C-mediated ischemic post- conditioning. The Journal of Surgical Research, 189, 198–206.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Zhu, J., Quyyumi, A. A., Rott, D., et al. (2001). Antibodies to human heat-shock protein 60 are associated with the presence and severity of coronary artery disease: Evidence for an autoimmune component of atherogenesis. Circulation, 103, 1071–1075.PubMedCrossRefPubMedCentralGoogle Scholar
  174. Zhu, J., Quyyumi, A. A., Wu, H., et al. (2003). Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1055–1059.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Francesca Bonomini
    • 1
    • 2
  • Gaia Favero
    • 1
  • Valentina Trapletti
    • 1
  • Rita Rezzani
    • 1
    • 2
    Email author
  1. 1.Anatomy and Physiopathology Division, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
  2. 2.Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs- (ARTO)”University of BresciaBresciaItaly

Personalised recommendations