Skip to main content

Fracture Fixation Biomechanics and Biomaterials

  • Chapter
  • First Online:
Orthopedic Biomaterials

Abstract

Surgical fracture fixation is an important part of modern orthopedic care. Implants are designed by engineers, and selected and applied by surgeons, with careful consideration of clinical, biological, biomechanical, and biomaterials principles. Clinically, a large variety of screws, plates, intramedullary nails, and external fixation devices are used. Fracture healing is a biologically complex process that may proceed down one of multiple possible pathways. Successful fracture healing, as well as implant survival, is dependent on three-dimensional biomechanics as the patient resumes activity. These biomechanics are dependent on patient variables as well as the fracture fixation construct chosen by the surgeon. Implant biomaterials must satisfy stringent biomechanical and biocompatibility requirements. Experimental and computational models enable advances in implant design, as well as our understanding of how surgeons may best apply these implants for each patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perren S, Buchanan J. Basic concepts relevant to the design and development of the point contact fixator (PC-fix). Injury. 1995;26:1–4.

    Article  Google Scholar 

  2. Runyan C, Gabrick K. Biology of bone formation, fracture healing, and distraction osteogenesis. J Craniofac Surg. 2017;28:1380–9.

    Article  PubMed  Google Scholar 

  3. Maggiano I, et al. Three-dimensional reconstruction of haversian systems in human cortical bone using synchotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age. J Anat. 2016;228:719–32.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cheal EJ, Mansmann KA, DiGioia AM, Hayes WC, Perren SM. Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy. J Orthop Res Off Publ Orthop Res Soc. 1991;9:131–42.

    Article  CAS  Google Scholar 

  5. Levy S, et al. Immature myeloid cells are critical for enhancing bone fracture healing through angiogenic cascade. Bone. 2016;93:113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duda GN, et al. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clin Orthop. 2002;396:163–72.

    Article  Google Scholar 

  7. Garnavos C. Treatment of aseptic non-union after intramedullary nailing without removal of the nail. Injury. 2017;48:S76–81.

    Article  PubMed  Google Scholar 

  8. Santiago H, Zamarioli A, Neto M, Volpon J. Exposure to secondhand smoke impairs fracture healing in rats. Clin Orthop. 2017;475:894–902.

    Article  PubMed  Google Scholar 

  9. Sathyendra V, et al. Single nucleotide polymorphisms in osteogenic genes in atrophic delayed fracture-healing: a preliminary investigation. J Bone Joint Surg Am. 2014;96:1242–8.

    Article  PubMed  Google Scholar 

  10. Damm P, Kutzner I, Bergmann G, Rohlmann A, Schmidt H. Comparison of in vivo measured loads in knee, hip and spinal implants during level walking. J Biomech. 2017;51:128–32.

    Article  PubMed  Google Scholar 

  11. Kienast B, et al. An electronically instrumented internal fixator for the assessment of bone healing. Bone Jt Res. 2016;5:191–7.

    Article  CAS  Google Scholar 

  12. Schneider E, et al. Loads acting in an intramedullary nail during fracture healing in the human femur. J Biomech. 2001;34:849–57.

    Article  CAS  PubMed  Google Scholar 

  13. Schlecht SH, Pinto DC, Agnew AM, Stout SD. Brief communication: the effects of disuse on the mechanical properties of bone: what unloading tells us about the adaptive nature of skeletal tissue. Am J Phys Anthropol. 2012;149:599–605.

    Article  PubMed  Google Scholar 

  14. Akhter MP, Alvarez GK, Cullen DM, Recker RR. Disuse-related decline in trabecular bone structure. Biomech Model Mechanobiol. 2011;10:423–9.

    Article  CAS  PubMed  Google Scholar 

  15. Miner MA. Cumulative damage in fatigue. J Appl Mech. 1945;12:A159–64.

    Google Scholar 

  16. Wee H, Reid JS, Chinchilli VM, Lewis GS. Finite element-derived surrogate models of locked plate fracture fixation biomechanics. Ann Biomed Eng. 2017;45:668–80.

    Article  PubMed  Google Scholar 

  17. Lenz M, Perren SM, Gueorguiev B, Höntzsch D, Windolf M. Mechanical behavior of fixation components for periprosthetic fracture surgery. Clin Biomech Bristol Avon. 2013;28:988–93.

    Article  Google Scholar 

  18. Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. 2007;52:1263–334.

    Article  CAS  Google Scholar 

  19. Cowin S. Pathology of functional adaptation of bone remodeling and repair in vivo. In Bone mechanics handbook. Taylor and Francis Group; 2001.

    Google Scholar 

  20. Comiskey DP, MacDonald BJ, McCartney WT, Synnott K, O' Byrne J. The role of interfragmentary strain on the rate of bone healing: a new interpretation and mathematical model. J Biomech. 2010;43:2830–4.

    Article  CAS  PubMed  Google Scholar 

  21. Augat P, et al. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003;21:1011–7.

    Article  PubMed  Google Scholar 

  22. Elkins J, et al. Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. J Bone Jt Surg. 2016;98:276–84.

    Article  Google Scholar 

  23. Bottlang M, et al. Far cortical locking can improve healing of fractures stabilized with locking plates. J Bone Joint Surg Am. 2010;92:1652–60.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8:133–43.

    Article  CAS  PubMed  Google Scholar 

  25. Augat P, et al. Early, full weightbearing with flexible fixation delays fracture healing. Clin Orthop. 1996;328:194–202.

    Article  Google Scholar 

  26. Schell H, et al. Mechanical induction of critically delayed bone healing in sheep: radiological and biomechanical results. J Biomech. 2008;41:3066–72.

    Article  PubMed  Google Scholar 

  27. Hente R, Füchtmeier B, Schlegel U, Ernstberger A, Perren SM. The influence of cyclic compression and distraction on the healing of experimental tibial fractures. J Orthop Res. 2004;22:709–15.

    Article  CAS  PubMed  Google Scholar 

  28. Claes L, Eckert-Hübner K, Augat P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res. 2002;20:1099–105.

    Article  PubMed  Google Scholar 

  29. Lujan TJ, et al. Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. J Orthop Trauma. 2010;24:156–62.

    Article  PubMed  Google Scholar 

  30. Nassiri M, Macdonald B, O’Byrne JM. Computational modelling of long bone fractures fixed with locking plates - how can the risk of implant failure be reduced? J Orthop. 2013;10:29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Beltran MJ, Collinge CA, Gardner MJ. Stress modulation of fracture fixation implants: J. Am Acad Orthop Surg. 2016;24:711–9.

    Article  Google Scholar 

  32. Pruitt LA, Chakravartula AM. Mechanics of biomaterials: fundamental principles for implant design. Cambridge University Press, 2011.

    Google Scholar 

  33. Morehead J, Holt G. Soft-tissue response to synthetic biomaterials. Otolaryngol Clin N Am. 1994;27:195–201.

    CAS  Google Scholar 

  34. Nuss KM, von Rechenberg B. Biocompatibility issues with modern implants in bone—a review for clinical orthopedics. Open Orthop J. 2008;2:66–78.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wright T, Maher S. Biomaterials. In: Orthopaedic basic science 65–85 American Academy of Orthopaedic Surgeons, 2007.

    Google Scholar 

  36. Ungersboeck A, Geret V, Pohler O, Schuetz M, Wuest W. Tissue reaction to bone plates made of pure titanium: a prospective, quantitative clinical study. J Mater Sci Mater Med. 1995;6:223–9.

    Article  CAS  Google Scholar 

  37. Arens S, et al. Influence of materials for fixation implants on local infection. J Bone Jt Surg Br. 1996;78:647–51.

    Article  CAS  Google Scholar 

  38. Uckan S, Veziroglu F, Soydan SS, Uckan E. Comparison of stability of resorbable and titanium fixation systems by finite element analysis after maxillary advancement surgery. J Craniofac Surg. 2009;20:775–9.

    Article  PubMed  Google Scholar 

  39. Marasco SF, Liovic P, Šutalo ID. Structural integrity of intramedullary rib fixation using a single bioresorbable screw. J Trauma Acute Care Surg. 2012;73:668–73.

    Article  PubMed  Google Scholar 

  40. Böstman O, Pihlajamäki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials. 2000;21:2615–21.

    Article  PubMed  Google Scholar 

  41. Schliemann B, et al. PEEK versus titanium locking plates for proximal humerus fracture fixation: a comparative biomechanical study in two- and three-part fractures. Arch Orthop Trauma Surg. 2017;137:63–71.

    Article  PubMed  Google Scholar 

  42. Bottlang M, Doornink J, Fitzpatrick DC, Madey SM. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Jt Surg Am. 2009;91:1985–94.

    Article  Google Scholar 

  43. Bottlang M, et al. Dynamic stabilization of simple fractures with active plates delivers stronger healing than conventional compression plating. J Orthop Trauma. 2017;31:71–7.

    Article  PubMed  Google Scholar 

  44. Piccinini M, Cugnoni J, Botsis J, Ammann P, Wiskott A. Influence of gait loads on implant integration in rat tibiae: experimental and numerical analysis. J Biomech. 2014;47:3255–63.

    Article  PubMed  Google Scholar 

  45. Gardner MJ, Ricciardi BF, Wright TM, Bostrom MP, van der Meulen MCH. Pause insertions during cyclic in vivo loading affect bone healing. Clin Orthop. 2008;466:1232–8.

    Article  PubMed  Google Scholar 

  46. Tsuji K, et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006;38:1424–9.

    Article  CAS  PubMed  Google Scholar 

  47. McBride-Gagyi SH, McKenzie JA, Buettmann EG, Gardner MJ, Silva MJ. BMP2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice. Bone. 2015;81:533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Helwig P, et al. Finite element analysis of four different implants inserted in different positions to stabilize an idealized trochanteric femoral fracture. Injury. 2009;40:288–95.

    Article  PubMed  Google Scholar 

  49. Perez A, Mahar A, Negus C, Newton P, Impelluso T. A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures. Med Eng Phys. 2008;30:755–60.

    Article  PubMed  Google Scholar 

  50. Fouad H. Assessment of function-graded materials as fracture fixation bone-plates under combined loading conditions using finite element modelling. Med Eng Phys. 2011;33:456–63.

    Article  CAS  PubMed  Google Scholar 

  51. Feerick EM, Kennedy J, Mullett H, FitzPatrick D, McGarry P. Investigation of metallic and carbon fibre PEEK fracture fixation devices for three-part proximal humeral fractures. Med Eng Phys. 2013;35:712–22.

    Article  PubMed  Google Scholar 

  52. Favre P, Kloen P, Helfet DL, Werner CML. Superior versus anteroinferior plating of the clavicle: a finite element study. J Orthop Trauma. 2011;25:661–5.

    Article  PubMed  Google Scholar 

  53. Tupis TM, Altman GT, Altman DT, Cook HA, Miller MC. Femoral bone strains during antegrade nailing: a comparison of two entry points with identical nails using finite element analysis. Clin Biomech Bristol Avon. 2012;27:354–9.

    Article  Google Scholar 

  54. Shih K-S, Hsu C-C, Hsu T-P. A biomechanical investigation of the effects of static fixation and dynamization after interlocking femoral nailing: a finite element study. J Trauma Acute Care Surg. 2012;72:E46–53.

    Article  PubMed  Google Scholar 

  55. Brown CJ, Sinclair RA, Day A, Hess B, Procter P. An approximate model for cancellous bone screw fixation. Comput Methods Biomech Biomed Engin. 2013;16:443–50.

    Article  CAS  PubMed  Google Scholar 

  56. MacLeod AR, Pankaj P, Simpson AHRW. Does screw-bone interface modelling matter in finite element analyses? J Biomech. 2012;45:1712–6.

    Article  PubMed  Google Scholar 

  57. Wang H, et al. Accuracy of individual trabecula segmentation based plate and rod finite element models in idealized trabecular bone microstructure. J Biomech Eng. 2013;135:044502.

    Article  PubMed  Google Scholar 

  58. Zdero R, Olsen M, Bougherara H, Schemitsch EH. Cancellous bone screw purchase: a comparison of synthetic femurs, human femurs, and finite element analysis. Proc Inst Mech Eng H. 2008;222(1175–1183):1175–83.

    Article  CAS  PubMed  Google Scholar 

  59. Leonidou A, et al. The biomechanical effect of bone quality and fracture topography on locking plate fixation in periprosthetic femoral fractures. Injury. 2015;46:213–7.

    Article  PubMed  Google Scholar 

  60. Ruedi T, Buckley R, Moran C. AO principles of fracture management. 1. In: AO publishing; 2007.

    Google Scholar 

  61. Lewis G, et al. Tangential biocortical locked fixation improves stability in Vancouver B1 periprosthetic femur fractures: a biomechanical study. J Orthop Trauma. 2015;29:e364–e370.

    Article  PubMed Central  Google Scholar 

  62. Tidwell JE, et al. The biomechanical cost of variable angle locking screws. Injury. 2016;47:1624–30.

    Article  PubMed  Google Scholar 

  63. Kandemir U, et al. Implant material, type of fixation at the shaft and position of plate modify biomechanics of distal femur plate Osteosynthesis. J Orthop Trauma. 2017;1:e241–6. https://doi.org/10.1097/BOT.0000000000000860.

    Article  Google Scholar 

  64. Wilson WK, Morris RP, Ward AJ, Carayannopoulos NL, Panchbhavi VK. Torsional failure of carbon Fiber composite plates versus stainless steel plates for comminuted distal fibula fractures. Foot Ankle Int. 2016;37:548–53.

    Article  PubMed  Google Scholar 

  65. Manteghi S, Mahboob Z, Fawaz Z, Bougherara H. Investigation of the mechanical properties and failure modes of hybrid natural fiber composites for potential bone fracture fixation plates. J Mech Behav Biomed Mater. 2017;65:306–16.

    Article  CAS  PubMed  Google Scholar 

  66. Smith WR, Ziran BH, Anglen JO, Stahel PF. Locking plates: tips and tricks. JBJS. 2007;89:2298–307.

    Google Scholar 

  67. Wee H, Reid J, Lewis G. Parametric and surrogate modeling of internal fixation of femur fractures demonstrate influence of surgical and patient variables. Ann Biomed Eng. 2016;44:3719–49.

    Article  Google Scholar 

  68. Horn J, Schlegel U, Krettek C, Ito K. Infection resistance of unreamed solid, hollow slotted and cannulated intramedullary nails: an in-vivo experimental comparison. J Orthop Res. 2005;23:810–5.

    Article  CAS  PubMed  Google Scholar 

  69. Wehner T, Penzkofer R, Augat P, Claes L, Simon U. Improvement of the shear fixation stability of intramedullary nailing. Clin Biomech Bristol Avon. 2011;26:147–51.

    Article  Google Scholar 

  70. Mahar AT, Lee SS, Lalonde FD, Impelluso T, Newton PO. Biomechanical comparison of stainless steel and titanium nails for fixation of simulated femoral fractures. J Pediatr Orthop. 2004;24:638–41.

    Article  PubMed  Google Scholar 

  71. Wang CJ, Brown CJ, Yettram AL, Procter P. Intramedullary nails: some design features of the distal end. Med Eng Phys. 2003;25:789–94.

    Article  CAS  PubMed  Google Scholar 

  72. Gallagher D, et al. Is distal locking necessary? A biomechanical investigation of intramedullary nailing constructs for intertrochanteric fractures. J Orthop Trauma. 2013;27:373–8.

    Article  PubMed  Google Scholar 

  73. Simpson DJ, Brown CJ, Yettram AL, Procter P, Andrew GJ. Finite element analysis of intramedullary devices: the effect of the gap between the implant and the bone. Proc Inst Mech Eng H. 2008;222(333–345):333–45.

    Article  CAS  PubMed  Google Scholar 

  74. Penzkofer R, et al. Influence of intramedullary nail diameter and locking mode on the stability of tibial shaft fracture fixation. Arch Orthop Trauma Surg. 2009;129:525–31.

    Article  PubMed  Google Scholar 

  75. Cheung G, Zalzal P, Bhandari M, Spelt J, Papini M. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Med Eng Phys. 2004;26:93–108.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the AO Foundation, Switzerland (Project S-15-196 L), and the National Science Foundation/Penn State Center for Health Organization Transformation. Hwabok Wee, PhD performed many of the finite element simulations shown in figures. We also acknowledge contribution from April D. Armstrong, MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tucker, S.M., Reid, J.S., Lewis, G.S. (2018). Fracture Fixation Biomechanics and Biomaterials. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials . Springer, Cham. https://doi.org/10.1007/978-3-319-89542-0_16

Download citation

Publish with us

Policies and ethics