Skip to main content

Platelet Rich Plasma: Biology and Clinical Usage in Orthopedics

  • Chapter
  • First Online:

Abstract

Biological research in the areas of skeletal, cartilaginous, tendinous, and muscular tissues has led to the advancement of various products designed to augment healing. Platelet-rich plasma (PRP) has been in clinical use and researched since the 1970s because of its regenerative properties. In this chapter, we will first define PRP and its components and discuss various methods of preparation and isolation. The second section will focus on the clinical applications of PRP on tissue specific pathologies including tendinopathy, ligamentous injuries, osteoarthritis, and muscle injuries in the field of orthopedic surgery and sports medicine. Lastly, the latest progress in PRP research will be briefly listed and some promising future directions will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alsousou J, et al. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br. 2009;91(8):987–96.

    Article  PubMed  CAS  Google Scholar 

  2. Anitua E, et al. New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol. 2006;24(5):227–34.

    Article  PubMed  CAS  Google Scholar 

  3. Khan M, Bedi A. Cochrane in CORR ((R)): platelet-rich therapies for musculoskeletal soft tissue injuries (Review). Clin Orthop Relat Res. 2015;473(7):2207–13.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sanchez M, et al. Platelet-rich therapies in the treatment of orthopaedic sport injuries. Sports Med. 2009;39(5):345–54.

    Article  PubMed  Google Scholar 

  5. Alvarez-Camino JC, Vazquez-Delgado E, Gay-Escoda C. Use of autologous conditioned serum (Orthokine) for the treatment of the degenerative osteoarthritis of the temporomandibular joint. Review of the literature. Med Oral Patol Oral Cir Bucal. 2013;18(3):e433–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baltzer AW, et al. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthr Cartil. 2009;17(2):152–60.

    Article  CAS  Google Scholar 

  7. Wehling P, et al. Autologous conditioned serum in the treatment of orthopedic diseases: the orthokine therapy. BioDrugs. 2007;21(5):323–32.

    Article  PubMed  CAS  Google Scholar 

  8. Whitman DH, Berry RL, Green DM. Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg. 1997;55(11):1294–9.

    Article  PubMed  CAS  Google Scholar 

  9. Li H, Li B. PRP as a new approach to prevent infection: preparation and in vitro antimicrobial properties of PRP. J Vis Exp. 2013;74

    Google Scholar 

  10. Dhurat R, Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author's perspective. J Cutan Aesthet Surg. 2014;7(4):189–97.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Degen RM, et al. Commercial separation systems designed for preparation of platelet-rich plasma yield differences in cellular composition. HSS J. 2017;13(1):75–80.

    Article  PubMed  Google Scholar 

  12. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27(3):158–67.

    Article  PubMed  CAS  Google Scholar 

  13. Mishra A, et al. Sports medicine applications of platelet rich plasma. Curr Pharm Biotechnol. 2012;13(7):1185–95.

    Article  PubMed  CAS  Google Scholar 

  14. DeLong JM, Russell RP, Mazzocca AD. Platelet-rich plasma: the PAW classification system. Arthroscopy. 2012;28(7):998–1009.

    Article  PubMed  Google Scholar 

  15. Yun SH, et al. Platelet activation: the mechanisms and potential biomarkers. Biomed Res Int. 2016;2016:9060143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Angiolillo DJ, Ueno M, Goto S. Basic principles of platelet biology and clinical implications. Circ J. 2010;74(4):597–607.

    Article  PubMed  CAS  Google Scholar 

  17. Qureshi AH, et al. Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PLoS One. 2009;4(10):e7627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Senzel L, Gnatenko DV, Bahou WF. The platelet proteome. Curr Opin Hematol. 2009;16(5):329–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Maynard DM, et al. Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost. 2007;5(9):1945–55.

    Article  PubMed  CAS  Google Scholar 

  20. Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Boswell SG, et al. Platelet-rich plasma: a milieu of bioactive factors. Arthroscopy. 2012;28(3):429–39.

    Article  PubMed  Google Scholar 

  22. Freymiller EG. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62(8):1046. author reply 1047-8.

    Article  PubMed  Google Scholar 

  23. Meyers KM, Holmsen H, Seachord CL. Comparative study of platelet dense granule constituents. Am J Phys. 1982;243(3):R454–61.

    CAS  Google Scholar 

  24. Ducy P. 5-HT and bone biology. Curr Opin Pharmacol. 2011;11(1):34–8.

    Article  PubMed  CAS  Google Scholar 

  25. Jonnalagadda D, Izu LT, Whiteheart SW. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood. 2012;120(26):5209–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Suelves M, et al. uPA deficiency exacerbates muscular dystrophy in MDX mice. J Cell Biol. 2007;178(6):1039–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Rundle CH, et al. Fracture healing in mice deficient in plasminogen activator inhibitor-1. Calcif Tissue Int. 2008;83(4):276–84.

    Article  PubMed  CAS  Google Scholar 

  28. Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ma L, et al. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci U S A. 2005;102(1):216–20.

    Article  PubMed  CAS  Google Scholar 

  30. Sehgal S, Storrie B. Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J Thromb Haemost. 2007;5(10):2009–16.

    Article  PubMed  CAS  Google Scholar 

  31. Italiano JE Jr, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008;111(3):1227–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cavallo C, et al. Platelet-rich plasma: the choice of activation method affects the release of bioactive molecules. Biomed Res Int. 2016;2016:6591717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Fufa D, et al. Activation of platelet-rich plasma using soluble type I collagen. J Oral Maxillofac Surg. 2008;66(4):684–90.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moojen DJ, et al. Antimicrobial activity of platelet-leukocyte gel against Staphylococcus aureus. J Orthop Res. 2008;26(3):404–10.

    Article  PubMed  Google Scholar 

  35. Li H, et al. Unique antimicrobial effects of platelet-rich plasma and its efficacy as a prophylaxis to prevent implant-associated spinal infection. Adv Healthc Mater. 2013;2(9):1277–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Portela GS, et al. L-PRP diminishes bone matrix formation around autogenous bone grafts associated with changes in osteocalcin and PPAR-gamma immunoexpression. Int J Oral Maxillofac Surg. 2014;43(2):261–8.

    Article  PubMed  CAS  Google Scholar 

  37. McCarrel TM, Minas T, Fortier LA. Optimization of leukocyte concentration in platelet-rich plasma for the treatment of tendinopathy. J Bone Joint Surg Am. 2012;94(19):e1431–8.

    Article  Google Scholar 

  38. Braun HJ, et al. The effect of platelet-rich plasma formulations and blood products on human synoviocytes: implications for intra-articular injury and therapy. Am J Sports Med. 2014;42(5):1204–10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Burnier L, et al. Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost. 2009;101(3):439–51.

    PubMed  CAS  Google Scholar 

  40. Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res. 2010;107(9):1047–57.

    Article  PubMed  CAS  Google Scholar 

  41. Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev. 2006;20(1):1–26.

    Article  PubMed  Google Scholar 

  42. Goubran HA, et al. Platelet microparticle: a sensitive physiological "fine tuning" balancing factor in health and disease. Transfus Apher Sci. 2015;52(1):12–8.

    Article  PubMed  Google Scholar 

  43. Burnouf T, et al. An overview of the role of microparticles/microvesicles in blood components: are they clinically beneficial or harmful? Transfus Apher Sci. 2015;53(2):137–45.

    Article  PubMed  Google Scholar 

  44. Antwi-Baffour S, et al. Understanding the biosynthesis of platelets-derived extracellular vesicles. Immun Inflamm Dis. 2015;3(3):133–40.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lu M, et al. Recent advances on extracellular vesicles in therapeutic delivery: challenges, solutions, and opportunities. Eur J Pharm Biopharm. 2017;119:381–95.

    Article  PubMed  CAS  Google Scholar 

  46. Arraud N, et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014;12(5):614–27.

    Article  PubMed  CAS  Google Scholar 

  47. Flaumenhaft R. Formation and fate of platelet microparticles. Blood Cells Mol Dis. 2006;36(2):182–7.

    Article  PubMed  CAS  Google Scholar 

  48. Keuren JF, et al. Effects of storage-induced platelet microparticles on the initiation and propagation phase of blood coagulation. Br J Haematol. 2006;134(3):307–13.

    Article  PubMed  CAS  Google Scholar 

  49. Heijnen HF, et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791–9.

    PubMed  CAS  Google Scholar 

  50. James R, et al. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am. 2008;33(1):102–12.

    Article  PubMed  Google Scholar 

  51. Wang X, et al. Proliferation and differentiation of human tenocytes in response to platelet rich plasma: an in vitro and in vivo study. J Orthop Res. 2012;30(6):982–90.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang J, Wang JH. Platelet-rich plasma releasate promotes differentiation of tendon stem cells into active tenocytes. Am J Sports Med. 2010;38(12):2477–86.

    Article  PubMed  Google Scholar 

  53. Giusti I, et al. Platelet concentration in platelet-rich plasma affects tenocyte behavior in vitro. Biomed Res Int. 2014;2014:630870.

    PubMed  PubMed Central  Google Scholar 

  54. Zhou Y, et al. The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells - implications of PRP application for the clinical treatment of tendon injuries. Stem Cell Res Ther. 2015;6:173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jo CH, et al. Platelet-rich plasma stimulates cell proliferation and enhances matrix gene expression and synthesis in tenocytes from human rotator cuff tendons with degenerative tears. Am J Sports Med. 2012;40(5):1035–45.

    Article  PubMed  Google Scholar 

  56. de Almeida AM, et al. Patellar tendon healing with platelet-rich plasma: a prospective randomized controlled trial. Am J Sports Med. 2012;40(6):1282–8.

    Article  PubMed  Google Scholar 

  57. Seijas R, et al. Pain in donor site after BTB-ACL reconstruction with PRGF: a randomized trial. Arch Orthop Trauma Surg. 2016;136(6):829–35.

    Article  PubMed  Google Scholar 

  58. Zayni R, et al. Platelet-rich plasma as a treatment for chronic patellar tendinopathy: comparison of a single versus two consecutive injections. Muscles Ligaments Tendons J. 2015;5(2):92–8.

    PubMed  PubMed Central  Google Scholar 

  59. Kaux JF, et al. Using platelet-rich plasma to treat jumper's knees: exploring the effect of a second closely-timed infiltration. J Sci Med Sport. 2016;19(3):200–4.

    Article  PubMed  CAS  Google Scholar 

  60. Dragoo JL, et al. Platelet-rich plasma as a treatment for patellar tendinopathy: a double-blind, randomized controlled trial. Am J Sports Med. 2014;42(3):610–8.

    Article  PubMed  Google Scholar 

  61. Vetrano M, et al. Platelet-rich plasma versus focused shock waves in the treatment of jumper's knee in athletes. Am J Sports Med. 2013;41(4):795–803.

    Article  PubMed  Google Scholar 

  62. de Vos RJ, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA. 2010;303(2):144–9.

    Article  PubMed  Google Scholar 

  63. de Jonge S, et al. One-year follow-up of platelet-rich plasma treatment in chronic Achilles tendinopathy: a double-blind randomized placebo-controlled trial. Am J Sports Med. 2011;39(8):1623–9.

    Article  PubMed  Google Scholar 

  64. Krogh TP, et al. Ultrasound-guided injection therapy of achilles tendinopathy with platelet-rich plasma or saline: a randomized, blinded, placebo-controlled trial. Am J Sports Med. 2016;44(8):1990–7.

    Article  PubMed  Google Scholar 

  65. Kearney RS, Parsons N, Costa ML. Achilles tendinopathy management: a pilot randomised controlled trial comparing platelet-richplasma injection witperh an eccentric loading programme. Bone Joint Res. 2013;2(10):227–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Boesen AP, et al. Effect of high-volume injection, platelet-rich plasma, and sham treatment in chronic midportion achilles tendinopathy: a randomized double-blinded prospective study. Am J Sports Med. 2017;45(9):2034–43. https://doi.org/10.1177/0363546517702862.

    Article  PubMed  Google Scholar 

  67. Schepull T, et al. Autologous platelets have no effect on the healing of human achilles tendon ruptures: a randomized single-blind study. Am J Sports Med. 2011;39(1):38–47.

    Article  PubMed  Google Scholar 

  68. Peerbooms JC, et al. Positive effect of an autologous platelet concentrate in lateral epicondylitis in a double-blind randomized controlled trial: platelet-rich plasma versus corticosteroid injection with a 1-year follow-up. Am J Sports Med. 2010;38(2):255–62.

    Article  PubMed  Google Scholar 

  69. Gosens T, et al. Ongoing positive effect of platelet-rich plasma versus corticosteroid injection in lateral epicondylitis: a double-blind randomized controlled trial with 2-year follow-up. Am J Sports Med. 2011;39(6):1200–8.

    Article  PubMed  Google Scholar 

  70. Yadav R, Kothari SY, Borah D. Comparison of local injection of platelet rich plasma and corticosteroids in the treatment of lateral epicondylitis of humerus. J Clin Diagn Res. 2015;9(7):RC05–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Lebiedzinski R, et al. A randomized study of autologous conditioned plasma and steroid injections in the treatment of lateral epicondylitis. Int Orthop. 2015;39(11):2199–203.

    Article  PubMed  Google Scholar 

  72. Khaliq A, et al. Effectiveness of platelets rich plasma versus corticosteroids in lateral epicondylitis. J Pak Med Assoc. 2015;65(11 Suppl 3):S100–4.

    PubMed  Google Scholar 

  73. Krogh TP, et al. Treatment of lateral epicondylitis with platelet-rich plasma, glucocorticoid, or saline: a randomized, double-blind, placebo-controlled trial. Am J Sports Med. 2013;41(3):625–35.

    Article  PubMed  Google Scholar 

  74. Montalvan B, et al. Inefficacy of ultrasound-guided local injections of autologous conditioned plasma for recent epicondylitis: results of a double-blind placebo-controlled randomized clinical trial with one-year follow-up. Rheumatology (Oxford). 2016;55(2):279–85.

    Article  Google Scholar 

  75. Palacio EP, et al. Effects of platelet-rich plasma on lateral epicondylitis of the elbow: prospective randomized controlled trial. Rev Bras Ortop. 2016;51(1):90–5.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mishra AK, et al. Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med. 2014;42(2):463–71.

    Article  PubMed  Google Scholar 

  77. Behera P, et al. Leukocyte-poor platelet-rich plasma versus bupivacaine for recalcitrant lateral epicondylar tendinopathy. J Orthop Surg (Hong Kong). 2015;23(1):6–10.

    Article  Google Scholar 

  78. Creaney L, et al. Growth factor-based therapies provide additional benefit beyond physical therapy in resistant elbow tendinopathy: a prospective, single-blind, randomised trial of autologous blood injections versus platelet-rich plasma injections. Br J Sports Med. 2011;45(12):966–71.

    Article  PubMed  Google Scholar 

  79. Raeissadat SA, et al. Is Platelet-rich plasma superior to whole blood in the management of chronic tennis elbow: one year randomized clinical trial. BMC Sports Sci Med Rehabil. 2014;6:12.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Raeissadat SA, et al. Effect of platelet-rich plasma (PRP) versus autologous whole blood on pain and function improvement in tennis elbow: a randomized clinical trial. Pain Res Treat. 2014;2014:191525.

    PubMed  PubMed Central  Google Scholar 

  81. Thanasas C, et al. Platelet-rich plasma versus autologous whole blood for the treatment of chronic lateral elbow epicondylitis: a randomized controlled clinical trial. Am J Sports Med. 2011;39(10):2130–4.

    Article  PubMed  Google Scholar 

  82. Gautam VK, et al. Platelet-rich plasma versus corticosteroid injection for recalcitrant lateral epicondylitis: clinical and ultrasonographic evaluation. J Orthop Surg (Hong Kong). 2015;23(1):1–5.

    Article  CAS  Google Scholar 

  83. Kesikburun S, et al. Platelet-rich plasma injections in the treatment of chronic rotator cuff tendinopathy: a randomized controlled trial with 1-year follow-up. Am J Sports Med. 2013;41(11):2609–16.

    Article  PubMed  Google Scholar 

  84. Ilhanli I, Guder N, Gul M. Platelet-rich plasma treatment with physical therapy in chronic partial supraspinatus tears. Iran Red Crescent Med J. 2015;17(9):e23732.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rha DW, et al. Comparison of the therapeutic effects of ultrasound-guided platelet-rich plasma injection and dry needling in rotator cuff disease: a randomized controlled trial. Clin Rehabil. 2013;27(2):113–22.

    Article  PubMed  Google Scholar 

  86. Antuna S, et al. Platelet-rich fibrin in arthroscopic repair of massive rotator cuff tears: a prospective randomized pilot clinical trial. Acta Orthop Belg. 2013;79(1):25–30.

    PubMed  Google Scholar 

  87. Carr AJ, et al. Platelet-rich plasma injection with arthroscopic acromioplasty for chronic rotator cuff tendinopathy: a randomized controlled trial. Am J Sports Med. 2015;43(12):2891–7.

    Article  PubMed  Google Scholar 

  88. Castricini R, et al. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am J Sports Med. 2011;39(2):258–65.

    Article  PubMed  Google Scholar 

  89. Flury M, et al. Does pure platelet-rich plasma affect postoperative clinical outcomes after arthroscopic rotator cuff repair? A randomized controlled trial. Am J Sports Med. 2016;44(8):2136–46.

    Article  PubMed  Google Scholar 

  90. Rodeo SA, et al. The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Am J Sports Med. 2012;40(6):1234–41.

    Article  PubMed  Google Scholar 

  91. Ruiz-Moneo P, et al. Plasma rich in growth factors in arthroscopic rotator cuff repair: a randomized, double-blind, controlled clinical trial. Arthroscopy. 2013;29(1):2–9.

    Article  PubMed  Google Scholar 

  92. Verhaegen F, Brys P, Debeer P. Rotator cuff healing after needling of a calcific deposit using platelet-rich plasma augmentation: a randomized, prospective clinical trial. J Shoulder Elb Surg. 2016;25(2):169–73.

    Article  Google Scholar 

  93. Wang A, et al. Do postoperative platelet-rich plasma injections accelerate early tendon healing and functional recovery after arthroscopic supraspinatus repair? A randomized controlled trial. Am J Sports Med. 2015;43(6):1430–7.

    Article  PubMed  Google Scholar 

  94. Weber SC, et al. Platelet-rich fibrin matrix in the management of arthroscopic repair of the rotator cuff: a prospective, randomized, double-blinded study. Am J Sports Med. 2013;41(2):263–70.

    Article  PubMed  Google Scholar 

  95. Zumstein MA, et al. SECEC Research Grant 2008 II: Use of platelet- and leucocyte-rich fibrin (L-PRF) does not affect late rotator cuff tendon healing: a prospective randomized controlled study. J Shoulder Elb Surg. 2016;25(1):2–11.

    Article  Google Scholar 

  96. Jo CH, et al. Platelet-rich plasma for arthroscopic repair of large to massive rotator cuff tears: a randomized, single-blind, parallel-group trial. Am J Sports Med. 2013;41(10):2240–8.

    Article  PubMed  Google Scholar 

  97. Malavolta EA, et al. Platelet-rich plasma in rotator cuff repair: a prospective randomized study. Am J Sports Med. 2014;42(10):2446–54.

    Article  PubMed  Google Scholar 

  98. Zhang Z, Wang Y, Sun J. The effect of platelet-rich plasma on arthroscopic double-row rotator cuff repair: a clinical study with 12-month follow-up. Acta Orthop Traumatol Turc. 2016;50(2):191–7.

    PubMed  Google Scholar 

  99. Pandey V, et al. Does application of moderately concentrated platelet-rich plasma improve clinical and structural outcome after arthroscopic repair of medium-sized to large rotator cuff tear? A randomized controlled trial. J Shoulder Elb Surg. 2016;25(8):1312–22.

    Article  Google Scholar 

  100. Randelli P, et al. Platelet rich plasma in arthroscopic rotator cuff repair: a prospective RCT study, 2-year follow-up. J Shoulder Elb Surg. 2011;20(4):518–28.

    Article  Google Scholar 

  101. Hak A, et al. A double-blinded placebo randomized controlled trial evaluating short-term efficacy of platelet-rich plasma in reducing postoperative pain after arthroscopic rotator cuff repair: a pilot study. Sports Health. 2015;7(1):58–66.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Werthel JD, et al. Arthroscopic double row cuff repair with suture-bridging and autologous conditioned plasma injection: functional and structural results. Int J Shoulder Surg. 2014;8(4):101–6.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zumstein MA, et al. Increased vascularization during early healing after biologic augmentation in repair of chronic rotator cuff tears using autologous leukocyte- and platelet-rich fibrin (L-PRF): a prospective randomized controlled pilot trial. J Shoulder Elb Surg. 2014;23(1):3–12.

    Article  Google Scholar 

  104. Gumina S, et al. Use of platelet-leukocyte membrane in arthroscopic repair of large rotator cuff tears: a prospective randomized study. J Bone Joint Surg Am. 2012;94(15):1345–52.

    Article  PubMed  Google Scholar 

  105. Figueroa D, et al. Platelet-rich plasma use in anterior cruciate ligament surgery: systematic review of the literature. Arthroscopy. 2015;31(5):981–8.

    Article  PubMed  Google Scholar 

  106. Mirzatolooei F, Alamdari MT, Khalkhali HR. The impact of platelet-rich plasma on the prevention of tunnel widening in anterior cruciate ligament reconstruction using quadrupled autologous hamstring tendon: a randomised clinical trial. Bone Joint J. 2013;95-B(1):65–9.

    Article  PubMed  CAS  Google Scholar 

  107. Vogrin M, et al. Effects of a platelet gel on early graft revascularization after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind, clinical trial. Eur Surg Res. 2010;45(2):77–85.

    Article  PubMed  CAS  Google Scholar 

  108. Nin JR, et al. Has platelet-rich plasma any role in anterior cruciate ligament allograft healing? Arthroscopy. 2009;25(11):1206–13.

    Article  PubMed  Google Scholar 

  109. Vogrin M, et al. The effect of platelet-derived growth factors on knee stability after anterior cruciate ligament reconstruction: a prospective randomized clinical study. Wien Klin Wochenschr. 2010;122(Suppl 2):91–5.

    Article  PubMed  CAS  Google Scholar 

  110. Akeda K, et al. Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthr Cartil. 2006;14(12):1272–80.

    Article  CAS  Google Scholar 

  111. Chien CS, et al. Incorporation of exudates of human platelet-rich fibrin gel in biodegradable fibrin scaffolds for tissue engineering of cartilage. J Biomed Mater Res B Appl Biomater. 2012;100(4):948–55.

    Article  PubMed  CAS  Google Scholar 

  112. Spreafico A, et al. Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes. J Cell Biochem. 2009;108(5):1153–65.

    Article  PubMed  CAS  Google Scholar 

  113. Gaissmaier C, et al. Effect of human platelet supernatant on proliferation and matrix synthesis of human articular chondrocytes in monolayer and three-dimensional alginate cultures. Biomaterials. 2005;26(14):1953–60.

    Article  PubMed  CAS  Google Scholar 

  114. Kaps C, et al. Human platelet supernatant promotes proliferation but not differentiation of articular chondrocytes. Med Biol Eng Comput. 2002;40(4):485–90.

    Article  PubMed  CAS  Google Scholar 

  115. van Buul GM, et al. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am J Sports Med. 2011;39(11):2362–70.

    Article  PubMed  Google Scholar 

  116. Bendinelli P, et al. Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-kappaB inhibition via HGF. J Cell Physiol. 2010;225(3):757–66.

    Article  PubMed  CAS  Google Scholar 

  117. Sundman EA, Cole BJ, Fortier LA. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med. 2011;39(10):2135–40.

    Article  PubMed  Google Scholar 

  118. Patel S, et al. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am J Sports Med. 2013;41(2):356–64.

    Article  PubMed  Google Scholar 

  119. Paterson KL, et al. Intra-articular injection of photo-activated platelet-rich plasma in patients with knee osteoarthritis: a double-blind, randomized controlled pilot study. BMC Musculoskelet Disord. 2016;17:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Cerza F, et al. Comparison between hyaluronic acid and platelet-rich plasma, intra-articular infiltration in the treatment of gonarthrosis. Am J Sports Med. 2012;40(12):2822–7.

    Article  PubMed  Google Scholar 

  121. Sanchez M, et al. A randomized clinical trial evaluating plasma rich in growth factors (PRGF-Endoret) versus hyaluronic acid in the short-term treatment of symptomatic knee osteoarthritis. Arthroscopy. 2012;28(8):1070–8.

    Article  PubMed  Google Scholar 

  122. Vaquerizo V, et al. Comparison of intra-articular injections of plasma rich in growth factors (PRGF-Endoret) versus Durolane hyaluronic acid in the treatment of patients with symptomatic osteoarthritis: a randomized controlled trial. Arthroscopy. 2013;29(10):1635–43.

    Article  PubMed  Google Scholar 

  123. Filardo G, et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord. 2012;13:229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Filardo G, et al. Platelet-rich plasma intra-articular knee injections show no superiority versus viscosupplementation: a randomized controlled trial. Am J Sports Med. 2015;43(7):1575–82.

    Article  PubMed  Google Scholar 

  125. Duymus TM, et al. Choice of intra-articular injection in treatment of knee osteoarthritis: platelet-rich plasma, hyaluronic acid or ozone options. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):485–92.

    Article  PubMed  Google Scholar 

  126. Gormeli G, et al. Multiple PRP injections are more effective than single injections and hyaluronic acid in knees with early osteoarthritis: a randomized, double-blind, placebo-controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(3):958–65.

    Article  PubMed  Google Scholar 

  127. Engebretsen L, et al. IOC consensus paper on the use of platelet-rich plasma in sports medicine. Br J Sports Med. 2010;44(15):1072–81.

    Article  PubMed  Google Scholar 

  128. Aoto K, et al. Circadian variation of growth factor levels in platelet-rich plasma. Clin J Sport Med. 2014;24(6):509–12.

    Article  PubMed  Google Scholar 

  129. Schippinger G, et al. Does single intramuscular application of autologous conditioned plasma influence systemic circulating growth factors? J Sports Sci Med. 2012;11(3):551–6.

    PubMed  PubMed Central  Google Scholar 

  130. Schippinger G, et al. Influence of intramuscular application of autologous conditioned plasma on systemic circulating IGF-1. J Sports Sci Med. 2011;10(3):439–44.

    PubMed  PubMed Central  Google Scholar 

  131. Reurink G, et al. Platelet-rich plasma injections in acute muscle injury. N Engl J Med. 2014;370(26):2546–7.

    Article  PubMed  CAS  Google Scholar 

  132. Reurink G, et al. Rationale, secondary outcome scores and 1-year follow-up of a randomised trial of platelet-rich plasma injections in acute hamstring muscle injury: the Dutch Hamstring Injection Therapy study. Br J Sports Med. 2015;49(18):1206–12.

    Article  PubMed  Google Scholar 

  133. Hamilton B, et al. Platelet-rich plasma does not enhance return to play in hamstring injuries: a randomised controlled trial. Br J Sports Med. 2015;49(14):943–50.

    Article  PubMed  Google Scholar 

  134. Rossi LA, et al. Does platelet-rich plasma decrease time to return to sports in acute muscle tear? A randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(10):3319–25.

    Article  PubMed  Google Scholar 

  135. Garg K, Corona BT, Walters TJ. Therapeutic strategies for preventing skeletal muscle fibrosis after injury. Front Pharmacol. 2015;6:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am. 2002;84-A(5):822–32.

    Article  Google Scholar 

  137. de Jong S, et al. Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol. 2011;57(6):630–8.

    Article  PubMed  CAS  Google Scholar 

  138. Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331(19):1286–92.

    Article  PubMed  CAS  Google Scholar 

  139. Anitua E, Troya M, Orive G. Plasma rich in growth factors promote gingival tissue regeneration by stimulating fibroblast proliferation and migration and by blocking transforming growth factor-beta1-induced myodifferentiation. J Periodontol. 2012;83(8):1028–37.

    Article  PubMed  CAS  Google Scholar 

  140. Anitua E, et al. Plasma rich in growth factors (PRGF-Endoret) stimulates proliferation and migration of primary keratocytes and conjunctival fibroblasts and inhibits and reverts TGF-beta1-Induced myodifferentiation. Invest Ophthalmol Vis Sci. 2011;52(9):6066–73.

    Article  PubMed  CAS  Google Scholar 

  141. Koulikovska M, et al. Platelet-rich plasma prolongs myofibroblast accumulation in corneal stroma with incisional wound. Curr Eye Res. 2015;40(11):1102–10.

    Article  PubMed  CAS  Google Scholar 

  142. Vidal B, et al. Fibrinogen drives dystrophic muscle fibrosis via a TGFbeta/alternative macrophage activation pathway. Genes Dev. 2008;22(13):1747–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Novak ML, Koh TJ. Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol. 2013;183(5):1352–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. van Meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res. 2012;347(1):177–86.

    Article  PubMed  CAS  Google Scholar 

  145. Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179(3):1074–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986;261(9):4337–45.

    PubMed  CAS  Google Scholar 

  147. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15(4):255–73.

    Article  PubMed  CAS  Google Scholar 

  148. Rhee S, Grinnell F. P21-activated kinase 1: convergence point in PDGF- and LPA-stimulated collagen matrix contraction by human fibroblasts. J Cell Biol. 2006;172(3):423–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Jinnin M, et al. Regulation of fibrogenic/fibrolytic genes by platelet-derived growth factor C, a novel growth factor, in human dermal fibroblasts. J Cell Physiol. 2005;202(2):510–7.

    Article  PubMed  CAS  Google Scholar 

  150. Kelc R, Vogrin M. Concerns about fibrosis development after scaffolded PRP therapy of muscle injuries: commentary on an article by Sanchez et al.: "Muscle repair: platelet-rich plasma derivates as a bridge from spontaneity to intervention.". Injury. 2015;46(2):428.

    Article  PubMed  Google Scholar 

  151. Sugiura T, et al. Increased HGF and c-Met in muscle tissues of polymyositis and dermatomyositis patients: beneficial roles of HGF in muscle regeneration. Clin Immunol. 2010;136(3):387–99.

    Article  PubMed  CAS  Google Scholar 

  152. Rothan HA, et al. Three-dimensional culture environment increases the efficacy of platelet rich plasma releasate in prompting skin fibroblast differentiation and extracellular matrix formation. Int J Med Sci. 2014;11(10):1029–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Delos D, et al. The effect of platelet-rich plasma on muscle contusion healing in a rat model. Am J Sports Med. 2014;42(9):2067–74.

    Article  PubMed  Google Scholar 

  154. Terada S, et al. Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J Bone Joint Surg Am. 2013;95(11):980–8.

    Article  PubMed  Google Scholar 

  155. Li H, et al. Customized platelet-rich plasma with transforming growth factor beta1 neutralization antibody to reduce fibrosis in skeletal muscle. Biomaterials. 2016;87:147–56.

    Article  PubMed  CAS  Google Scholar 

  156. Murray IR, et al. Minimum information for studies evaluating biologics in orthopaedics (MIBO): platelet-rich plasma and mesenchymal stem cells. J Bone Joint Surg Am. 2017;99(10):809–19.

    Article  PubMed  Google Scholar 

  157. Hogan MV, et al. Tissue engineering of ligaments for reconstructive surgery. Arthroscopy. 2015;31(5):971–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshuai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

LaBaze, D., Li, H. (2018). Platelet Rich Plasma: Biology and Clinical Usage in Orthopedics. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials . Springer, Cham. https://doi.org/10.1007/978-3-319-89542-0_12

Download citation

Publish with us

Policies and ethics