Skip to main content

Nanotechnology for Orthopedic Applications: From Manufacturing Processes to Clinical Applications

  • Chapter
  • First Online:
Orthopedic Biomaterials
  • 1176 Accesses

Abstract

This chapter covers the integration of artificial materials into natural tissues of the human body, particularly bone, and what can be achieved through a couple of key nano-manufacturing techniques (such as shot peening and electrophoretic deposition). To achieve proper mechanical anchorage and integration, orthopedic implanted materials should resemble the tissues they are replacing as much as possible. Thus, provided here is an overview of the structure and function of bone tissues, as well as a review of the concepts and methods used by other researchers attempting to regenerate orthopedic tissues, with a focus on nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magnusson SP, Langberg H, Kjaer M. The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol. 2010;6(5):262–8.

    Article  PubMed  Google Scholar 

  2. Sechler JL, Corbett SA, Wenk MB, Schwarzbauer JE. Modulation of cell-extracellular matrix interactions. Ann N Y Acad Sci. 1998;857:143–54.

    Article  CAS  PubMed  Google Scholar 

  3. Sanes JR, Engvall E, Butkowski R, Hunter DD. Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J Cell Biol. 1990;111(4):1685–99.

    Article  CAS  PubMed  Google Scholar 

  4. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59:1413–33.

    Article  CAS  PubMed  Google Scholar 

  5. Slavik GJ, Ragetly G, Ganesh N, Griffon DJ, Cunningham B. A replica molding technique for producing fibrous chitosan scaffolds for caritlage engineering. J Mater Chem. 2007;17:4095–101.

    Article  CAS  Google Scholar 

  6. Ma P. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60(2):184–98.

    Article  CAS  PubMed  Google Scholar 

  7. Flaumenhaft R, Rifkin DB. The extracellular regulation of growth factor action. Mol Biol Cell. 1992;3(10):1057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Streuli CH, Schmidhauser C, Kobrin M, Bissell MJ, Derynck R. Extracellular matrix regulates expression of the TGF-beta 1 gene. J Cell Biol. 1993;120(1):253–60.

    Article  CAS  PubMed  Google Scholar 

  9. Schuppan D, Schmid M, Somasundaram R, Ackermann R, Ruehl M, Nakamura T, Riecken E. Collagens in the liver extracellular matrix bind hepatocyte growth factor. Gastroenterology. 1998;114(1):139–52.

    Article  CAS  PubMed  Google Scholar 

  10. Benoit DSW, Anseth KS. Nanostructured scaffolds for tissue engineering. In: Peppas NA, editor. Nanotechnology in therapeutics: current technology and applications. London: Taylor & Francis; 2007. p. 205–38.

    Google Scholar 

  11. Ravin T. Tensegrity to tendinosis. J Prolother. 2011;3(4):826–35.

    Google Scholar 

  12. Giancotti FG. Integrin signaling: specificity and control of cell survival and cell cycle progression. Curr Opin Cell Biol. 1997;9(5):691–700.

    Article  CAS  PubMed  Google Scholar 

  13. Hemler ME. Integrin associated proteins. Curr Opin Cell Biol. 1998;10(5):578–85.

    Article  CAS  PubMed  Google Scholar 

  14. Ruoslahti E, Yamaguchi Y, Hildebrand A, Border WA. Extracellular matrix/growth factor interactions. Cold Spring Harb Symp Quant Biol. 1992;57:309–15.

    Article  CAS  PubMed  Google Scholar 

  15. Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987;48(4):549–54.

    Article  CAS  PubMed  Google Scholar 

  16. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69(1):11–25.

    Article  CAS  PubMed  Google Scholar 

  17. Rho JY, Juhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92–102.

    Article  CAS  PubMed  Google Scholar 

  18. Weiner S, Traub W. Bone structure: from angstroms to microns. FASEB J. 1992;6(3):879–85.

    Article  CAS  PubMed  Google Scholar 

  19. Rho JY, Ashman RB, Turner CH. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993;26(2):111–9.

    Article  CAS  PubMed  Google Scholar 

  20. Viola J, Lal B, Grad O. The emergence of tissue engineering as a research field. Arlington, VA: The National Science Foundation; 2003.

    Google Scholar 

  21. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2:403–30.

    Article  PubMed  Google Scholar 

  22. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  PubMed  Google Scholar 

  23. Nerem R. Regenerative medicine: the emergence of an industry. J R Soc Interface. 2010;7:S771–5.

    Article  PubMed  PubMed Central  Google Scholar 

  24. “Goldstein Research Group Homepage.” [Online]. https://secure.hosting.vt.edu/www.tissue.che.vt.edu/home_frame.htm.

  25. Webster TJ. From nanotechnology to picotechnology: what is on the horizon? Nanotek-2013, OMICS International, Nanotek Expo, 2013.

    Google Scholar 

  26. Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4(1):66–80.

    Article  CAS  Google Scholar 

  27. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A. 2003;67(2):531–7.

    Article  CAS  PubMed  Google Scholar 

  28. Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed Engl. 2009;48(30):5406–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci. 2003;116:1881–92.

    Article  CAS  PubMed  Google Scholar 

  30. Wójciak-Stothard B, Curtis AS, Monaghan W, McGrath M, Sommer I, Wilkinson CD. Role of the cytoskeleton in the reaction of fibroblasts to multiple grooved substrata. Cell Motil Cytoskeleton. 1995;31(2):147–58.

    Article  PubMed  Google Scholar 

  31. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6:13–22.

    Article  CAS  PubMed  Google Scholar 

  32. Weiner S, Wagner HD. THE MATERIAL BONE: structure-mechanical function relations. Annu Rev Mater Sci. 1998;28(1):271–98.

    Article  CAS  Google Scholar 

  33. Song J, Malathong V, Bertozzi CR. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J Am Chem Soc. 2005;127(10):3366–72.

    Article  CAS  PubMed  Google Scholar 

  34. Willmann G. Coating of implants with hydroxyapatite—material connections between bone and metal. Adv Eng Mater. 1999;1(2):95–105.

    Article  CAS  Google Scholar 

  35. Danie Kingsley J, Ranjan S, Dasgupta N, Saha P. Nanotechnology for tissue engineering: need, techniques and applications. J Pharm Res. 2013;7(2):200–4.

    CAS  Google Scholar 

  36. Navarro M, Michiardi A, Castano O, Planell JA. Biomaterials in orthopaedics. J R Soc Interface. 2008;5(27):1137–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Laurencin CT, Ambrosio AM, Borden MD, Cooper JA Jr. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng. 1999;1:19–46.

    Article  CAS  PubMed  Google Scholar 

  38. Brydone A, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H. 2010;224(12):1329–43.

    Article  CAS  PubMed  Google Scholar 

  39. Reid RL. Hernia through an iliac bone-graft donor site. A case report. J Bone Joint Surg Am. 1968;50(4):757–60.

    Article  CAS  PubMed  Google Scholar 

  40. Dickson G, Buchanan F, Marsh D, Harkin-Jones E, Little U, McCaigue M. Orthopaedic tissue engineering and bone regeneration. Technol Health Care. 2007;15(1):57–67.

    PubMed  Google Scholar 

  41. Ludwig SC, Kowalski JM, Boden SD. Osteoinductive bone graft substitutes. Eur Spine J. 2000;9(Suppl 1):S119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006;37(Suppl 2):S59–66.

    Article  PubMed  Google Scholar 

  43. Spellberg B, Bartlett JG, Gilbert DN. The future of antibiotics and resistance. N Engl J Med. 2013;368(4):299–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–98.

    Article  PubMed  Google Scholar 

  45. Neu HC. The crisis in antibiotic resistance. Science. 1992;257(5073):1064–73.

    Article  CAS  PubMed  Google Scholar 

  46. Laurencin C, Khan Y, El-Amin SF. Bone graft substitutes. Expert Rev Med Devices. 2006;3(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  47. Desai BM. Osteobiologics. Am J Orthop (Belle Mead NJ). 2007;36(4 Suppl):8–11.

    Google Scholar 

  48. De Long WG, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am. 2007;89(3):649–58.

    Article  PubMed  Google Scholar 

  49. Toolan BC. Current concepts review: orthobiologics. Foot Ankle Int. 2006;27(7):561–6.

    Article  PubMed  Google Scholar 

  50. Zhao G, Zinger O, Schwartz Z, Wieland M, Landolt D, Boyan BD. Osteoblast-like cells are sensitive to submicron-scale surface structure. Clin Oral Implants Res. 2006;17(3):258–64.

    Article  PubMed  Google Scholar 

  51. McManus AJ, Doremus RH, Siegel RW, Bizios R. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. J Biomed Mater Res A. 2005;72(1):98–106.

    Article  CAS  PubMed  Google Scholar 

  52. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51(3):475–83.

    Article  CAS  PubMed  Google Scholar 

  53. Price RL, Gutwein LG, Kaledin L, Tepper F, Webster TJ. Osteoblast function on nanophase alumina materials: influence of chemistry, phase, and topography. J Biomed Mater Res A. 2003;67(4):1284–93.

    Article  CAS  PubMed  Google Scholar 

  54. Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NHJ. Implant surface roughness and bone healing: a systematic review. J Dent Res. 2006;85(6):496–500.

    Article  CAS  PubMed  Google Scholar 

  55. Dolatshahi-Pirouz A, Nikkhah M, Kolind K, Dokmeci MR, Khademhosseini A. Micro- and nanoengineering approaches to control stem cell-biomaterial interactions. J Funct Biomater. 2011;2(4):88–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dolatshahi-Pirouz A, Jensen T, Kraft DC, Foss M, Kingshott P, Hansen JL, Larsen AN, Chevallier J, Besenbacher F. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces. ACS Nano. 2010;4(5):2874–82.

    Article  CAS  PubMed  Google Scholar 

  57. Bagherifard S, Ghelichi R, Khademhosseini A, Guagliano M. Cell response to Nanocrystallized metallic substrates obtained through severe plastic deformation. ACS Appl Mater Interfaces. 2014;6(11):7963–85.

    Article  CAS  PubMed  Google Scholar 

  58. Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A. Engineering microscale topographies to control the cell-substrate interface. Biomaterials. 2012;33(21):5230–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21(17):1803–10.

    Article  CAS  PubMed  Google Scholar 

  60. Guvendiren M, Burdick JA. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun. 2012;3:792.

    Article  CAS  PubMed  Google Scholar 

  61. Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001;7(1):55–71.

    Article  CAS  PubMed  Google Scholar 

  62. Kieswetter K, Schwartz Z, Dean DD, Boyan BD. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med. 1996;7(4):329–45.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials. 2007;28(18):2821–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan BD. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res Part A. 2005;74A(1):49–58.

    Article  CAS  Google Scholar 

  65. Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2(4):176–94.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881–90.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nazhat SN, Young AM, Pratten J. Sterility and infection. In: Biomedical materials. Boston, MA: Springer US; 2009. p. 239–60.

    Chapter  Google Scholar 

  68. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114–22.

    Google Scholar 

  69. Gristina AG, Naylor P, Myrvik Q. Infections from biomaterials and implants: a race for the surface. Med Prog Technol. 14(3–4):205–24.

    Google Scholar 

  70. Puckett SD, Taylor E, Raimondo T, Webster TJ. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31(4):706–13.

    Article  CAS  PubMed  Google Scholar 

  71. Epstein AK, Hochbaum AI, Kim P, Aizenberg J. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry. Nanotechnology. 2011;22(49):494007.

    Article  CAS  PubMed  Google Scholar 

  72. Ivanova EP, Truong VK, Wang JY, Berndt CC, Jones RT, Yusuf II, Peake I, Schmidt HW, Fluke C, Barnes D, Crawford RJ. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir. 2010;26(3):1973–82.

    Article  CAS  PubMed  Google Scholar 

  73. Kerr A, Cowling MJ. The effects of surface topography on the accumulation of biofouling. Philos Mag. 2003;83(24):2779–95.

    Article  CAS  Google Scholar 

  74. Whitehead KA, Verran J. The effect of surface topography on the retention of microorganisms. Food Bioprod Process. 2006;84(4):253–9.

    Article  Google Scholar 

  75. Graham M, Cady N. Nano and Microscale topographies for the prevention of bacterial surface fouling. Coatings. 2014;4(1):37–59.

    Article  CAS  Google Scholar 

  76. Helbig R, Günther D, Friedrichs J, Rößler F, Lasagni A, Werner C. The impact of structure dimensions on initial bacterial adhesion. Biomater Sci. 2016;4(7):1074–8.

    Article  CAS  PubMed  Google Scholar 

  77. Bagherifard S, Guagliano M. Fatigue behavior of a low-alloy steel with nanostructured surface obtained by severe shot peening. Eng Fract Mech. 2012;81:56–68.

    Article  Google Scholar 

  78. Bagherifard S, Fernandez-Pariente I, Ghelichi R, Guagliano M. Fatigue behavior of notched steel specimens with nanocrystallized surface obtained by severe shot peening. Mater Des. 2013;45:497–503.

    Article  CAS  Google Scholar 

  79. Bagherifard S, Hickey DJ, de Luca AC, Malheiro VN, Markaki AE, Guagliano M, Webster TJ. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials. 2015;73:185–97.

    Article  CAS  PubMed  Google Scholar 

  80. Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci. 2007;52(1):1–61.

    Article  CAS  Google Scholar 

  81. Mathew D, Bhardwaj G, Wang Q, Webster TJ. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals. Int J Nanomed. 2014;9:1775–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Webster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hickey, D., Webster, T. (2018). Nanotechnology for Orthopedic Applications: From Manufacturing Processes to Clinical Applications. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials . Springer, Cham. https://doi.org/10.1007/978-3-319-89542-0_1

Download citation

Publish with us

Policies and ethics