Skip to main content

Corrosion and Stress Corrosion Testing of Aerospace Vehicle Structural Alloys

  • Chapter
  • First Online:
Corrosion and Stress Corrosion Testing of Aerospace Vehicle Structural Alloys

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Standard or reference data on environmental properties, including corrosion and stress corrosion, are mandatory for the qualification and certification of materials for aerospace vehicles and the design of actual structures and components. This review discusses the determination and classification of the ambient temperature corrosion and stress corrosion properties of aerospace structural alloys and some of the issues involved. Recommendations for further testing and evaluation are given also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallace W, Hoeppner DW, Kandachar PV (1985) AGARD corrosion handbook, vol 1, aircraft corrosion: causes and case histories. AGARDograph AGARD-AG-278, Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France

    Google Scholar 

  2. Benavides S (ed) (2009) Corrosion control in the aerospace industry. Woodhead Publishing Limited, Cambridge, UK

    Google Scholar 

  3. Dunn BD (2016) Materials and processes for spacecraft and high reliability applications. Springer International Publishing, Springer Praxis Books, Chichester, UK

    Google Scholar 

  4. Korb LJ, Franklin DB (1987) Corrosion in the aerospace industry. In: Metals handbook ninth edition, vol 13, Corrosion. ASM International, Materials Park, OH 44073–0002, USA, pp 1058–1100 (Korb) and pp 1101–1106 (Franklin)

    Google Scholar 

  5. Wanhill RJH, Byrnes RT, Smith CL (2011) Stress corrosion cracking in aerospace vehicles, Chapter 16. In: Raja VS, Shoji T (eds) Stress corrosion cracking: theory and practice. Woodhead Publishing Limited, Cambridge, UK, pp 608–650

    Chapter  Google Scholar 

  6. RTO/NATO (2011) Corrosion fatigue and environmentally assisted cracking in aging military vehicles, AGARDograph AG-AVT-140, Research and Technology Organisation RTO/NATO, Neuilly-sur-Seine, France

    Google Scholar 

  7. Paone ML (1993) The corrosion challenge: the impact of corrosion maintenance programs. Mater Eval 51(12):1373–1376

    Google Scholar 

  8. Akdeniz A (2001) The impact of mandated aging airplane programs on jet transport airplane scheduled structural inspection programs. Aircraft Eng Aerosp Technol 73(1):4–15

    Article  Google Scholar 

  9. NTSB (1989) Aircraft accident report, Aloha Airlines, Flight 243, Boeing 737–200, N73711, Near Maui, Hawaii, April 28, 1988, NTSB report no. NTSB/AAR-89/03, National Transportation Safety Board, Washington, DC, USA

    Google Scholar 

  10. Kool GA, Kolkman HJ, Wanhill RJH (1994) Aircraft crash caused by stress corrosion cracking, American Society of Mechanical Engineers Paper 94-GT-298, International gas turbine and aeroengine congress and exposition, 13–16 June 1994, The Hague, The Netherlands

    Google Scholar 

  11. Weiss SP (1973) Apollo experience report—lunar module structural subsystem, NASA Technical Note NASA TN D-7084, National Aeronautics and Space Administration, Washington, D.C. 20546, USA

    Google Scholar 

  12. Johnson RE (1973) Apollo experience report—the problem of stress-corrosion cracking, NASA Technical Note NASA TN D-7111, National Aeronautics and Space Administration, Washington, DC 20546, USA

    Google Scholar 

  13. Pedley MD (2009) Materials and processes selection, control, and implementation plan for JSC flight hardware, NASA JSC 27301F, Section 5.2, structural engineering division. National Aeronautics and Space Administration Lyndon B. Johnson Space Center, Houston, TX 77058, USA

    Google Scholar 

  14. ASM Committee on Corrosion of Weldments (1987) Corrosion of weldments. In: Metals handbook ninth edition, vol 13, Corrosion. ASM International, Materials Park, OH 44073–0002, USA, pp 344–368

    Google Scholar 

  15. Heinimann M, Kulak M, Bucci R, James M, Wilson G, Brockenbrough J, Zonker H, Sklyut H (2007) Validation of advanced metallic hybrid concept with improved damage tolerance capabilities for next generation lower wing and fuselage applications. In: Lazzeri L, Salvetti A (eds) ICAF 2007—Durability and damage tolerance of aircraft structures: metals vs composites (Pacini, Naples, Italy), vol 1, pp 206–223

    Google Scholar 

  16. Dubois T (2007) New materials in business aircraft: composites, metals vie for supremacy. Aviation International News, March 2007, pp 50–54

    Google Scholar 

  17. Arbegast WJ, Hartley P (1999) Friction stir weld technology development at Lockheed Martin Michoud Space System—an overview. In: Vitek JM, David SA, Johnson JA, Smartt HB, DebRoy T (eds) Proceedings of the international conference on trends in welding research. ASM International, Materials Park, OH 44073-0002, USA, pp 541–546

    Google Scholar 

  18. Windisch M (2009) Damage tolerance of cryogenic pressure vessels, European Space Agency ESA technology and research programme report ESA TRP DTA-TN-A250041-0004-MT, European Space Agency ESA/ESTEC, Noordwijk, The Netherlands

    Google Scholar 

  19. National Aeronautics and Space Administration (2010) Orion: America’s next generation spacecraft, NASA Publication NP-2010-10-025-JSC, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA

    Google Scholar 

  20. Niedzinski M, Thompson C (2010) Airware 2198 backbone of the Falcon family of SpaceX launchers. Light Metal Age 68, December 2010, pp 6–7, 55

    Google Scholar 

  21. Hales SJ, Tayon WA, Domack MS (2012) Friction-stir-welded and spin-formed end domes for cryogenic tanks, NASA Report NF1676L-13613, NASA Langley Research Center, Hampton, VA 23681, USA

    Google Scholar 

  22. Wanhill RJH (2014) Aerospace applications of aluminium–lithium alloys, Chapter 15. In: Eswara Prasad N, Gokhale AA, Wanhill RJH (eds) Aluminum–Lithium alloys: processing, properties and applications, Butterworth-Heinemann, Elsevier, Inc., Oxford, UK, pp 503–535

    Google Scholar 

  23. Padovani CG, Davenport AJ, Connolly BJ, Williams SW, Groso A, Stampanoni M, Belluci F (2008) Corrosion and protection of friction stir welds in aerospace aluminium alloys, La Metallurgia Italiana, Oct 2008, pp 29–42

    Google Scholar 

  24. Threadgill PL, Leonard PL, Shercliff HR, Withers PJ (2009) Friction stir welding of aluminium alloys. Int Mater Rev 54(2):49–93

    Article  Google Scholar 

  25. Hu W, Efstathios IM (2000) Corrosion and environment-assisted cracking behavior of friction stir welded Al 2195 and Al 2219 alloys. Mater Sci Forum 331–337:1683–1688

    Article  Google Scholar 

  26. Metal Corrosion in the Atmosphere (1968) ASTM special technical publication no. 435, American Society for Testing and Materials, Philadelphia, PA 19103, USA

    Google Scholar 

  27. Romans HB, Craig HL Jr (1968) Atmospheric corrosion testing of aluminum alloys. In: Metal corrosion in the atmosphere, ASTM special technical publication no. 435. American Society for Testing and Materials, Philadelphia, PA 19103, USA, pp 61–82

    Google Scholar 

  28. Brandt SM, Adam LH (1968) Atmospheric exposure of light metals. In: Metal Corrosion in the Atmosphere, ASTM special technical publication no. 435. American Society for Testing and Materials, Philadelphia, PA 19103, USA, pp 95–128

    Google Scholar 

  29. McGeary FL, Summerson TJ, Ailor WH Jr (1968) Atmospheric exposure of nonferrous metals and alloys—aluminum: seven-year data. In: Metal corrosion in the atmosphere, ASTM special technical publication no. 435. American Society for Testing and Materials, Philadelphia, PA 19103, USA, pp 141–174

    Google Scholar 

  30. Carter VE (1968) Atmospheric corrosion of aluminum and its alloys: results of six-year exposure tests. In: Metal corrosion in the atmosphere, ASTM special technical publication no. 435. American Society for Testing and Materials, Philadelphia, PA 19103, USA, pp 257–270

    Google Scholar 

  31. Ailor WH Jr (1968) Performance of aluminum alloys at other test sites. In: Metal corrosion in the atmosphere, ASTM special technical publication no. 435. American Society for Testing and Materials, Philadelphia, PA 19103, USA, pp 285–307

    Google Scholar 

  32. Thompson DH (1968) Atmospheric corrosion of copper alloys. In: Metal corrosion in the atmosphere, ASTM special technical publication no. 435. American Society for Testing and Materials, Philadelphia, PA 19103, USA, pp 129–140

    Google Scholar 

  33. Mattsson E, Lindgren S (1968) Hard-rolled aluminum alloys. In: Metal corrosion in the atmosphere, ASTM special technical publication no. 435. American Society for Testing and Materials, Philadelphia, PA 19103, USA, pp 240–256

    Google Scholar 

  34. Briggs CW (1968) Atmospheric corrosion of carbon and low alloy cast steels. In: Metal corrosion in the atmosphere, ASTM special technical publication no. 435. American Society for Testing and Materials, Philadelphia, PA 19103, USA, pp 271–284

    Google Scholar 

  35. Carter VE, Campbell HS (1968) The effect of initial weather conditions on the atmospheric corrosion of aluminum and its alloys. In: Metal corrosion in the atmosphere, ASTM special technical publication no. 435. American Society for Testing and Materials, Philadelphia, PA 19103, USA, pp 39–42

    Google Scholar 

  36. Calle LM (2009) Corrosion control in space launch vehicles, Chapter 9. In: Benavides S (ed) Corrosion control in the aerospace industry. Woodhead Publishing Limited, Cambridge, UK, pp 195–224

    Chapter  Google Scholar 

  37. Calle LM (2014) NASA’s corrosion technology at the Kennedy Space Center: anticipating, managing and preventing corrosion. In: 2014 international workshop on environment and alternative energy, 21–24 Oct 2014, PPT Document KSC-E-DAA-TN18212, NASA Kennedy Space Center, Cocoa Beach, FL 32899, USA

    Google Scholar 

  38. Calle LM (2015) NASA’s corrosion technology at the Kennedy Space Center: anticipating, managing and preventing corrosion, Report KSC-E-DAA-TH24705, NASA Kennedy Space Center, Cocoa Beach, FL 32899, USA

    Google Scholar 

  39. Montgomery EL, Calle LM, Curran JC, Kolody MR (2012) Timescale correlation between marine atmospheric exposure and accelerated corrosion testing—part 2. In: Corrosion conference and expo 2012, National Association of Corrosion Engineers. NACE International, Houston, TX, USA, vol 7, pp 5655–5671

    Google Scholar 

  40. Iverson WP (1987) Microbial corrosion of metals. In: Laskin AL (ed) Advances in applied microbiology. Academic Press Inc., Harcourt Brace Jovanovich, Orlando, FL 32887, USA, vol 32, pp 1–36

    Google Scholar 

  41. Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. International Microbiology 8:169–180

    Google Scholar 

  42. Passman FJ (2013) Microbial contamination and its control in fuels and fuel systems since 1980—a review. Int Biodeterior Biodegradation 81:88–104

    Article  Google Scholar 

  43. Yang SS, Lin JY, Lin YT (1998) Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system. J Microbiol Immunol Infect 31(3):151–164

    Google Scholar 

  44. Rajasekar A, Ting Y−P (2010) Microbial corrosion of Aluminum 2024 aeronautical alloy by hydrocarbon degrading bacteria Bacillus cereus ACE4 and Serratia marcescens ACE2. Ind Eng Chem Res 49(13):6054–6061

    Article  Google Scholar 

  45. Holroyd NJH, Scamans GM, Newman RC, Vasudevan AK (2014) Corrosion and stress corrosion in aluminum–lithium alloys, Chapter 14. In: Eswara Prasad N, Gokhale AA, Wanhill RJH (eds) Aluminum–lithium alloys: processing, properties and applications. Butterworth-Heinemann, Elsevier, Inc., Oxford, UK, pp 457–500

    Google Scholar 

  46. Wanhill RJH (1989) Spacecraft sustained load fracture control, European space agency contract no. AO/2–1162 NL/PH: NLR Technical Publication NLR TP 89163 U, National Aerospace Laboratory NLR, Amsterdam, The Netherlands

    Google Scholar 

  47. Wanhill RJH (1991) Spacecraft sustained load fracture control. In: Proceedings of international conference spacecraft structures and mechanical testing, ESTEC, 24–26 April 1991, ESA SP-321, vol 2, pp 543–549, European Space Agency, Paris, France

    Google Scholar 

  48. Wanhill RJH (1991) Fracture control guidelines for stress corrosion cracking of high strength alloys, NLR Technical Publication NLR TP 91006 U, National Aerospace Laboratory NLR, Amsterdam, The Netherlands

    Google Scholar 

  49. Wanhill RJH (2007) Aircraft stress corrosion in the Netherlands: 1965–2007, NLR Technical Publication NLR-TP-2009-520, National Aerospace Laboratory NLR, Amsterdam, The Netherlands

    Google Scholar 

  50. National Aeronautics and Space Administration (2005) Guidelines for the selection of metallic materials for stress corrosion cracking resistance in sodium chloride environments, NASA EM30, MSFC-STD-3029, Revision A, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  51. European Cooperation for Space Standardization (2009) Determination of the susceptibility of metals to stress-corrosion cracking, European Space Agency ECSS-Q-ST-70–37C, ESA Requirements and Standards Division, Noordwijk, The Netherlands

    Google Scholar 

  52. Staehle RW, Forty AJ, Van Rooyen D (eds) 1969, Fundamental aspects of stress corrosion cracking. NACE-1, National Association of Corrosion Engineers, NACE International, Houston, TX 77084, USA

    Google Scholar 

  53. Davis JR (ed) (1999) Chapter 7. In: Corrosion of aluminum and aluminum alloys. ASM International, Materials Park, OH 44073-0002, USA

    Google Scholar 

  54. Brown BF (1966) A new stress-corrosion cracking test for high-strength alloys. Mat Res Stand 6(3):129–133

    Google Scholar 

  55. Brown BF (ed) (1972) Stress-corrosion cracking in high strength steels and in titanium and aluminum alloys, Naval Research Laboratory, Washington, D.C. 20375, U.S. Government Printing Office, Washington, D.C. 20402, USA

    Google Scholar 

  56. Sprowls DO, Shumaker MB, Walsh JD, Coursen JW (1973) Evaluation of stress-corrosion cracking susceptibility using fracture mechanics techniques, ALCOA Final Report—Part I, Contract No. NAS 8-21487, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  57. Wanhill RJH (1975) Aqueous stress corrosion in titanium alloys. Br Corros J 10(2):69–78

    Article  Google Scholar 

  58. Brown BF (1975) Stress corrosion cracking control measures, National Bureau of Standards NBS Monograph 156, U.S. Government Printing Office, Washington, D.C. 20402, USA

    Google Scholar 

  59. Judy RW Jr, Goode RJ (1972) Stress-corrosion cracking of high-strength steels and titanium alloys. Weld J 51(9):437s–448s

    Google Scholar 

  60. Judy RW Jr, Goode RJ (1975) Standard method of test for plane-strain stress corrosion cracking resistance of metallic materials, Naval Research Laboratory Report 7865, Naval Research Laboratory, Washington, D.C. 20375, USA

    Google Scholar 

  61. Wei RP, Novak SR, Williams DP (1972) Some important considerations in the development of stress corrosion cracking test methods. Mat Res Stand 12(9):25–30

    Google Scholar 

  62. Janssen M., Zuidema J, Wanhill RJH (2002) Chapter 10. In: Fracture Mechanics, Second Edition. Delft University Press, Delft, The Netherlands

    Google Scholar 

  63. European Cooperation for Space Standardization (2009) Material selection for controlling stress-corrosion cracking, European Space Agency ECSS-Q-ST-70-36C, ESA Requirements and Standards Division, Noordwijk, The Netherlands

    Google Scholar 

  64. Franklin DB (1977) Design criteria for controlling stress corrosion cracking, Marshall Space Flight Center Document MSFC-SPEC-522A, November 1977, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  65. Franklin DB (1987) Design criteria for controlling stress corrosion cracking, Marshall Space Flight Center Document MSFC-SPEC-522B, July 1987, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  66. Humphries TS (1963) Stress corrosion of high-strength aluminum alloys, NASA MTP-P&VE-M-63-8, June 1963, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  67. Lifka BW, Sprowls DO, Kelsey RA (1972) Investigation of smooth specimen SCC test procedures. Variations in environment, specimen size, stressing frame, and stress state, ALCOA Final Report—Part II, Contract No. NAS 8-21487, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  68. Humphries TS, Nelson EE (1973) Synthetic sea water—an improved stress corrosion test medium for aluminum alloys, NASA Technical Memorandum NASA TM X-64733, March 1973, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  69. Humphries TS, Nelson EE (1981) Seacoast stress corrosion cracking of aluminum alloys, NASA Technical Memorandum NASA TM-82393, January 1981, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  70. Humphries TS, Coston JE (1981) An improved stress corrosion test medium for aluminum alloys, NASA Technical Memorandum NASA TM-82452, November 1981, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  71. Williamson JG (1965) Stress corrosion studies of AM-355 stainless steel, NASA Technical Memorandum NASA TM X-53317, August 1965, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  72. Humphries TS, Nelson EE (1969) Stress corrosion cracking evaluation of several precipitation hardening stainless steels, NASA Technical Memorandum NASA TM X- 53910, September 1969, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  73. Humphries TS, Nelson EE (1970) Stress corrosion cracking evaluation of several ferrous and nickel alloys, NASA Technical Memorandum NASA TM X-64511, April 1970, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  74. Montano JW (1972) A mechanical property and stress corrosion evaluation of Custom 455 stainless steel alloy, NASA Technical Memorandum NASA TM X-64682, August 1972, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  75. Montano JW (1973) A mechanical property and stress corrosion evaluation of 431 stainless steel alloy, NASA Technical Memorandum NASA TM X-64729, March 1973, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  76. Montano JW (1976) The stress corrosion resistance and the cryogenic temperature mechanical behavior of 18-3 Mn (Nitronic 33) stainless steel parent and welded material, NASA Technical Memorandum NASA TM X-73309, June 1976, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  77. Montano JW (1977) The stress corrosion resistance and the cryogenic temperature mechanical properties of annealed Nitronic 60 bar material, NASA Technical Memorandum NASA TM X-73359, Jan 1977, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  78. Humphries TS, Nelson EE (1980) Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels, NASA Technical Memorandum NASA TM-78257, January 1980, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  79. Montano JW (1986) A torque, tension, and stress corrosion evaluation of high strength A286 bolts, NASA Technical Memorandum NASA TM-86539, February 1986, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  80. Denhard EE Jr (1967) Stress corrosion cracking of high strength stainless steels, Paper 5 in Stress corrosion cracking in aircraft structural materials, AGARD conference proceedings no. 18, Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France

    Google Scholar 

  81. Rhode TM (1986) Revision of design values for 7075-T7351 and 7075-T7651 aluminum plate, Air Force Wright Aeronautical Laboratories Technical Report AFWAL-TR-86-4100, December 1986, Wright-Patterson Air Force Base, OH 45433-6533, USA

    Google Scholar 

  82. Sprowls DO, Brown RH (1962) Resistance of wrought high-strength aluminum alloys to stress corrosion, Technical Paper no. 17, Aluminum Company of America, Pittsburgh, PA 15212, USA

    Google Scholar 

  83. Sprowls DO (1972) Progress toward standardization of SCC test techniques by the National Association of Corrosion Engineers and the Aluminum Association, Paper 3 in Specialists meeting on stress corrosion testing methods, AGARD conference proceedings no. 98, Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France

    Google Scholar 

  84. Cataldo CE (1966) Stress corrosion. In: Materials research at MSFC: research achievements review, vol II, Report no. 4, NASA Technical Memorandum TM X-53610, National Aeronautics and Space Administration, Washington, D.C. 20546, USA

    Google Scholar 

  85. Lisagor WB, Manning CR Jr, Bales TT (1968) Stress-corrosion cracking of Ti-6Al-4V titanium alloy in nitrogen tetroxide, NASA technical note NASA TN D-4289, National Aeronautics and Space Administration, Washington, D.C. 20546, USA

    Google Scholar 

  86. Coburn S (1978) Atmospheric corrosion. In: Metals handbook ninth edition, vol 1, Properties and selection—irons and steels. ASM International, Materials Park, OH 44073-0002, USA, p 720

    Google Scholar 

  87. Humphries TS, Nelson EE (1980) Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels, NASA Technical Memorandum NASA TM-78276, May 1980, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  88. Kain RM (1987) Evaluation of crevice corrosion. In: Metals handbook ninth edition, vol 13, Corrosion. ASM International, Materials Park, OH 44073-0002, USA, pp 303–310

    Google Scholar 

  89. Calle LM, Kolody MR, Vinje RD, Whitten MC, Li W (2004) Electrochemical impedance spectroscopy of alloys in a simulated Space Shuttle launch environment. In ‘EIS 2004, 6th international symposium on electrochemical impedance spectroscopy, 16–21 May 2004, NASA Kennedy Space Center, Cocoa Beach, FL 32899, USA: https://corrosion.ksc.nasa.gov/pubs/153.pdf

  90. Symposium on atmospheric exposure tests on non-ferrous metals (1946) ASTM special technical publication no. 67, American Society for Testing and Materials, Philadelphia 3, PA, USA

    Google Scholar 

  91. Symposium on atmospheric corrosion of non-ferrous metals (1955) ASTM special technical publication no. 175, American Society for Testing and Materials, Philadelphia 3, PA, USA

    Google Scholar 

  92. Dix EH Jr, Mears RB (1946) The resistance of aluminum-base alloys to atmospheric exposure. In: Symposium on atmospheric exposure tests on non-ferrous metals, 1946, ASTM special technical publication no. 67. American Society for Testing and Materials, Philadelphia 3, PA, USA, pp 57–71

    Google Scholar 

  93. Dean SW, Anthony WH (1988) Atmospheric corrosion of wrought aluminum alloys during a ten-year period. In: Dean SW, Lee TS (eds) Degradation of metals in the atmosphere, ASTM special technical publication 965. American Society for Testing and Materials, Philadelphia, PA 19103, USA, pp 191–205

    Google Scholar 

  94. Morrison JD (1980) Report on relative corrosivity of atmospheres at various distances from the seacoast, NASA Report MTB 099-74, January 1980, John F. Kennedy Space Center, FL 32899, USA

    Google Scholar 

  95. Calle LM, MacDowell LG (2003) 35 years of corrosion protection at the Kennedy Space Center, Paper 03208 presented at the NACE Corrosion/2003, March 2003, San Diego, CA, USA: https://corrosion.ksc.nasa.gov/35year.htm

  96. Calle LM, Curran JC, Kolody MR, Montgomery EL (2013) The behavior of environmentally friendly corrosion preventive compounds in an aggressive coastal marine environment. In: Corrosion conference and expo 2013, National Association of Corrosion Engineers, vol 4. NACE International, Houston, TX, USA, pp 3526–3541

    Google Scholar 

  97. Calle LM, Li W, Buhrow JW, Johnsey MN (2016) Smart coatings for corrosion protection, Oral/visual presentation at Jornada Internacional De Investigacion Cientifica: ‘Ciencia y Technologia a la Vanguardia de Mexico’, November 2016, Campeche, Mexico: https://ntrs.nasa.gov/search.jsp?R=20160013624

  98. Rioja RJ, Liu J (2012) The evolution of Al-Li base products for aerospace and space applications. Metall Mat Trans A 43A:3325–3337

    Article  Google Scholar 

  99. Schmidt T, Yocum L, Bush D, Caratelli J (2012) Advanced aluminum alloys enabling performance improvements, Joint armaments conference, 14–17 May 2012, Seattle, WA 98104, USA

    Google Scholar 

  100. Niedzinski M, Ebersolt D, Schulz P (2013) Review of Airware alloys currently used for space launchers, Presentation FC-TIM-2013-s8-02-Niedzinski-Ebersolt, Workshop: Technical interchange meeting (TIM) on fracture control of spacecraft, launchers and their payloads and experiments, 20–21 March 2013, ESA/ESTEC, Noordwijk, The Netherlands

    Google Scholar 

  101. Denzer DK, Rioja RJ, Bray GH, Venema GB, Colvin EL (2012) The evolution of plate and extruded products with high strength and toughness. In: Weiland H, Rollett AD, Cassada WA (eds) Proceedings of the 13th international conference on aluminum alloys (ICAA13). The Minerals, Metals and Materials Society (TMS) and Wiley, Hoboken, New Jersey, USA, pp 587–592

    Google Scholar 

  102. Henon C, Rouault R (2012) Comparison of corrosion performance and mechanisms of Al-Li alloys with and without Li addition. In: Weiland H, Rollett AD, Cassada WA (eds) Proceedings of the 13th international conference on aluminum alloys (ICAA13). The Minerals, Metals and Materials Society (TMS) and Wiley, Hoboken, New Jersey, USA, pp 431–436

    Google Scholar 

  103. Karabin LM, Bray GH, Rioja RJ, Venema GB (2012) Al-Li-Cu-Mg-(Ag) products for lower wing skin applications. In: Weiland H, Rollett AD, Cassada WA (eds) Proceedings of the 13th international conference on aluminum alloys (ICAA13). The Minerals, Metals and Materials Society (TMS) and Wiley, Hoboken, New Jersey, USA, pp 529–534

    Google Scholar 

  104. Boselli J, Denzer D, Karabin L, Venema G, Witters J, Feyen G, Farhangnia E, Watson H, Bush D (2014) New aluminum-based thick gauge products for increased fuel efficiency and reduced maintenance cost in next-generation aircraft, 25th AeroMat conference and exposition, 16–19 June 2014, Orlando, FL 32801, USA

    Google Scholar 

  105. Warner-Locke J, Moran J, Hull B, Reilly L (2013) The effect of corrosion pit morphology on SCC and fatigue of 2x99 Alloys compared to 7xxx alloys, ‘Research in progress (RIP) symposium extended abstracts’, Corrosion conference and expo 2013, National Association of Corrosion Engineers, NACE International, 17–21 March 2013, Orlando, FL 32801, USA, NACE International, Houston, TX 77084, USA

    Google Scholar 

  106. MMPDS-07 (2012) Metallic materials properties development and standardization (MMPDS), Battelle Memorial Institute, Columbus, OH 43201, USA

    Google Scholar 

  107. Davison RM, DeBold T, Johnson MJ (1987) Corrosion of stainless steels. In Metals handbook ninth edition, vol 13, Corrosion. ASM International, Materials Park, OH 44073-0002, USA, pp 547–565

    Google Scholar 

  108. Outokumpu (2013) Handbook of stainless steel, Outokumpu, Espoo, Finland. www.outokumpu.com/sitecollectiondocuments/outokumpu-stainless-steel-handbook.pdf

  109. Calle LM, Kolody MR, Vinje RD (2004) Electrochemical impedance spectroscopy of alloys in a simulated Space Shuttle launch environment, NASA Kennedy Space Center, Cocoa Beach, FL 32899, USA: https://ntrs.nasa.gov/search.jsp?R=20120003344

  110. Tesch A (2013) Stress corrosion cracking tests at ESA—recent highlights, Presentation FC-TIM-2013-s2-02-Tesch, Workshop: Technical interchange meeting (TIM) on fracture control of spacecraft, launchers and their payloads and experiments, 20–21 March 2013, ESA/ESTEC, Noordwijk, The Netherlands

    Google Scholar 

  111. Ecord GM (1972) Apollo experience report—pressure vessels, NASA Technical Note NASA TN D-6975, National Aeronautics and Space Administration, Washington, DC 20546, USA

    Google Scholar 

  112. Lane IRC, Morton AGS (1966) Sea-water embrittlement of titanium. In: Stress-corrosion cracking of titanium, ASTM special technical publication 397. American Society for Testing and Materials, Philadelphia, PA 19103, USA, pp 246–258

    Google Scholar 

  113. Lane IR, Cavallaro JL (1968) Metallurgical and mechanical aspects of the sea-water stress corrosion of titanium. In: Applications related phenomena in titanium alloys, ASTM special technical publication 432. American Society for Testing and Materials, Philadelphia, PA 19103, USA, pp 147–169

    Google Scholar 

  114. Feeney JA, Blackburn MJ (1971) The status of stress corrosion cracking of titanium alloys in aqueous solutions. In: Scully JC (ed) The theory of stress corrosion cracking in alloys. North Atlantic Treaty Organisation, Scientific Affairs Division, Brussels, Belgium, pp 355–398

    Google Scholar 

  115. Beck TR (1967) Stress corrosion cracking of titanium alloys, I. Ti:8-1-1 alloy in aqueous solutions. J Electrochem Soc 114(6):551–556

    Article  Google Scholar 

  116. Fager DN, Spurr WF (1968) Some characteristics of aqueous stress corrosion in titanium alloys. ASM Trans Quart 61:283–292

    Google Scholar 

  117. Merlin PW (2009) Design and development of the Blackbird: challenges and lessons learned, AIAA Paper 2009-1522. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 5−8 January 2009, Orlando, FL 32801, USA

    Google Scholar 

  118. Bhattacharjee A, Saha B, Williams JC (2017) Titanium alloys: Part 2−alloy development, properties and applications, Chapter 6. In: Eswara Prasad N, Wanhill RJH (eds) Aerospace materials and material technologies, vol 1: Aerospace materials. Springer Science+Business Media, Singapore, pp 117–148

    Google Scholar 

  119. Johnston RL, Johnson RE, Ecord GM, Castner WL (1967) Stress-corrosion cracking of Ti-6Al-4V alloy in methanol, NASA Technical Note NASA TN D-3868, National Aeronautics and Space Administration, Washington, DC 20546, USA

    Google Scholar 

  120. Castner WL, Ecord GM (Undated) Lesson 4: selected Apollo & Shuttle lessons learned (Part 1), [PPT] Slide—NESC Academy Online—NASA: accessed April 2017 via Google and the search terms ‘pressure vessel nitrogen tetroxide apollo space shuttle’

    Google Scholar 

  121. Kappelt GF, King EJ (1967) Observations on the stress corrosion of the 6Al-4V titanium alloy in nitrogen tetroxide. In: Meyer FH Jr (ed) Proceedings of the Air Force Materials Laboratory fiftieth anniversary technical conference on corrosion of military and aerospace equipment, Denver, Colorado, 23–25 May 1967, Air Force Materials Laboratory Technical Report AFML-TR-67-329, Wright-Patterson Air Force Base, OH 45433, USA, pp 920–940

    Google Scholar 

  122. Lisagor WB, Manning CR Jr, Bales TT (1968) Stress-corrosion cracking of Ti-6Al-4V titanium alloy in nitrogen tetroxide, NASA Technical Note NASA TN D-4289, National Aeronautics and Space Administration, Washington, DC 20546, USA

    Google Scholar 

  123. Brownfield CD (1967/8) The stress corrosion of titanium in nitrogen tetroxide, methyl alcohol, and other fluids, Technical Report SD 67-213A, Space Division of North American Rockwell, Downey, CA 90242, USA

    Google Scholar 

  124. Bixler WD (1972) Flaw growth of 6Al-4V STA titanium in nitrogen tetroxide with low nitric oxide content, NASA Contractor Report NASA-CR-160945, National Aeronautics and Space Administration, Washington, DC 20546, USA

    Google Scholar 

  125. Tiffany CF, Masters JN (1967) Investigation of the flaw growth characteristics of Ti-6Al-4V titanium used in Apollo spacecraft pressure vessels, NASA Contractor Report NASA CR-65586, National Aeronautics and Space Administration, Washington, DC 20546, USA

    Google Scholar 

  126. Masters JN, Haese WP, Bixler WD (1969) Fracture and nitrogen tetroxide/sustained load flaw growth of 6Al-4V titanium, NASA Contractor Report NASA-CR-109366, National Aeronautics and Space Administration, Washington, DC 20546, USA

    Google Scholar 

  127. Boyd JD, Moreland PJ, Boyd WK, Wood RA, Williams DN, Jaffee RI (1970) The effect of composition on the mechanism of stress-corrosion cracking of titanium alloys in N2O4, and aqueous and hot-salt environments, NASA Contractor Report NASA CR-1525, National Aeronautics and Space Administration, Washington, DC 20546, USA

    Google Scholar 

  128. Boyd JD, Moreland PJ, Boyd WK, Wood RA, Williams DN, Jaffee RI (1971) The effect of composition on the mechanism of stress-corrosion cracking of titanium alloys in N2O4, and aqueous and hot-salt environments (Part II), NASA Contractor Report NASA CR-1846, National Aeronautics and Space Administration, Washington, DC 20546, USA

    Google Scholar 

  129. Bjorklund RA (1983) Stress-corrosion crack-growth study of titanium alloy Ti-6Al-4V exposed to Freon PCA and nitrogen tetroxide MON-1, Jet Propulsion Laboratory Report SD-TR-83-53, Jet Propulsion Laboratory, Pasadena, CA 90009, USA

    Google Scholar 

  130. Wright AC (1976) USAF propellant handbooks, nitric acid/nitrogen tetroxide oxidizers, vol II, Air Force Rocket Propulsion Laboratory Technical Report AFRPL-TR-76-76, Air Force Rocket Propulsion Laboratory, Edwards Air Force Base, CA 93523, USA, p. 2.3·6

    Google Scholar 

  131. MSC Apollo 13 Investigation Team, Panel 7 (1970) Reaction processes in high pressure fluid systems, NASA Technical Memorandum NASA-TM-X-66919, National Aeronautics and Space Administration, Washington, DC 20546, USA

    Google Scholar 

  132. Peters M, Kumpfert J, Ward CH, Leyens C (2003) Titanium alloys for aerospace applications, Chapter 13. In: Leyens C, Peters M (eds) Titanium and titanium alloys: fundamentals and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 333–350

    Chapter  Google Scholar 

  133. Tiffany CF (1970) Fracture control of metallic pressure vessels, NASA Special Publication NASA SP-8040, National Aeronautics and Space Administration, Washington, DC 20546, USA

    Google Scholar 

  134. Chell GG, McClung RC, Kuhlman CJ, Russell DA, Garr K, Donnelly B (1999) Guidelines for proof test analysis, NASA Contractor Report NASA/CR‒1999-209427, NASA Center for Aerospace Information, Linthicum Heights, MD 21090-2934, USA

    Google Scholar 

  135. Adenstedt H (1949) Creep of titanium at room temperature. Metal Prog 65:658–660

    Google Scholar 

  136. Reimann WH (1971) Room temperature creep in Ti-6Al-4V. J Mat 6(4):926–940

    Google Scholar 

  137. Zeyfang R, Martin E, Conrad H (1971) Low temperature creep of titanium. Mat Sci Eng 8(3):134–140

    Article  Google Scholar 

  138. Thompson AW, Odegard BC (1973) The influence of microstructure on low temperature creep of Ti-5Al-2.5Sn. Metall Trans 4(4):899–908

    Article  Google Scholar 

  139. Odegard BC, Thompson AW (1974) Low temperature creep of Ti-6Al-4V. Metall Trans 5(5):1207–1213

    Article  Google Scholar 

  140. Imam MA, Gilmore CM (1979) Room temperature creep of Ti-6Al-4V. Metall Trans A 10A(4):419–425

    Article  Google Scholar 

  141. Paton NE, Thompson AW (1982) Creep of hydrogen-charged Ti-5Al-2.5Sn at room temperature. Metall Trans A 13A(8):1531–1532

    Article  Google Scholar 

  142. Gao GY, Dexter SC (1987) Effect of hydrogen on creep behavior of Ti-6Al-4V alloy at room temperature. Metall Trans A 18A(6):1125–1130

    Article  Google Scholar 

  143. Chu HP (1997) Low temperature creep of a titanium alloy Ti-6Al-2Cb-1Ta-0.8Mo, NASA Technical Memorandum NASA TM-104641, NASA Center for Aerospace Information, Linthicum Heights, MD 21090-2934, USA

    Google Scholar 

  144. Neeraj T, Hiu D-H, Daehn GS, Mills MJ (2000) Phenomenological and microstructural analysis of room temperature creep in titanium alloys. Acta Mater 48(6):1225–1238

    Article  Google Scholar 

  145. Tanaka H, Yamada T, Sato E, Kuribayashi K, Jimbo I (2004) Creep behavior in titanium alloys at ambient temperatures. In: Bainum PM, Furong L, Nakajima T (eds) Space activities and cooperation contributing to all Pacific Basin countries: vol 117, Advances in the astronautical sciences. American Astronautical Society, San Diego, CA 92198, USA, pp 649–658

    Google Scholar 

  146. Aiyangar AK, Neuberger BW, Oberson PG, Ankem S (2005) The effects of stress level and grain size on the ambient temperature creep deformation behavior of an alpha Ti-1.6 wt pct V alloy. Metall Mat Trans A 36A(3):637–644

    Article  Google Scholar 

  147. Ankem R, Wilt T (2006) A literature review of low temperature (<0.25Tmp) creep behavior of α, α-β, and β titanium alloys, U.S. Nuclear Regulatory Commission Contract NRC-02-02-012, Center for Nuclear Waste Regulatory Analyses, South West Research Institute, San Antonio, TX 78238-5166, USA

    Google Scholar 

  148. Barkia B, Doquet V, Couzinié JP, Guillot I (2015) Room-temperature creep and stress relaxation in commercial purity titanium—influence of the oxygen and hydrogen contents on incubation phenomena and aging-induced rejuvenation of the creep potential. Mater Sci Eng, A 624:79–89

    Article  Google Scholar 

  149. Yoder GR, Griffis CA, Crooker TW (1974) The cracking of Ti-6Al-4V alloys under sustained load in ambient air. Trans ASME, J Eng Mat Technol, 96 (Series H, 4):268–274

    Article  Google Scholar 

  150. Williams DN (1974) Subcritical crack growth under sustained load. Metall Trans 5(11):2351–2358

    Article  Google Scholar 

  151. Meyn DA (1974) Effect of hydrogen on fracture and inert-environment sustained load cracking resistance of α-β titanium alloys. Metall Trans 5(11):2405–2414

    Article  Google Scholar 

  152. Moody NR, Gerberich WW (1980) Hydrogen-induced slow crack growth in Ti-6Al-6V-2Sn. Metall Trans A 11A(6):973–981

    Article  Google Scholar 

  153. Sastry SML, Lederich RJ, Rath BB (1981) Subcritical crack-growth under sustained load in Ti-6Al-6V-2Sn. Metall Trans A 12A(1):83–94

    Article  Google Scholar 

  154. Moody NR, Gerberich WW (1982) The effect of stress state on internal hydrogen-induced crack growth in Ti-6Al-6V-2Sn. Metall Trans A 13A(6):1055–1061

    Article  Google Scholar 

  155. Takatori H, Chiba Y, Ogura T (1992) Effect of microstructure on sustained load cracking behavior of Ti-6Al-4V alloy. Tetsu-To-Hagane 78(5):837-844 (partially in Japanese)

    Article  Google Scholar 

  156. Kostrivas A, Smith LS, Gittos MF (2004) Sustained load cracking in titanium alloys. In: Lütjering G, Albrecht J (eds) Ti-2003 science and technology, vol 4. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 2083–2090

    Google Scholar 

  157. Kostrivas T, Smith L, Gittos M (2005) Sustained load cracking of titanium alloy weldments. In: ASME 24th international conference on offshore mechanics and arctic engineering, vol 3, 12–17 June 2005, Halkidiki, Greece. American Society of Mechanical Engineers, New York, NY 10016, USA, pp 221–229

    Google Scholar 

  158. Somerday BP, Moody NR, Costa JE (1998) Environment-induced cracking in structural titanium alloys, Paper no. 267, Corrosion 98, NACE International, 22–27 March 1998, San Diego, CA 92109, USA. NACE International, Houston, TX 77084, USA

    Google Scholar 

  159. Lewis JC, Kenny JT (1976) Sustained load crack growth design data for Ti-6Al-4V titanium alloy tanks containing hydrazine, AIAA paper 76-769, American Institute of Aeronautics and Astronautics and Society of Automotive Engineers 12th Propulsion Conference, 26–29 July 1976, Palo Alto, CA 94301, USA. American Institute of Aeronautics and Astronautics, Reston, VA 2019-5807, USA

    Google Scholar 

  160. Evans RM (1964) The stress relief of titanium welds for low-temperature applications, DMIC Technical Note, 26 May 1964, Defense Metals Information Center, Battelle Memorial Institute, Columbus, OH 43212, USA

    Google Scholar 

  161. Kabir ASH, Cao X, Gholipour J, Wanjara P, Cuddy J, Birur A, Medraj M (2012) Effect of postweld heat treatment on microstructure, hardness, and tensile properties of laser-welded Ti-6Al-4V. Metall Mat Trans A 43A:4171–4184

    Article  Google Scholar 

  162. DMIC (1967) Accelerated crack propagation of titanium by methanol, halogenated hydrocarbons, and other solutions, DMIC Memorandum 228, 6 March 1967, Defense Metals Information Center, Battelle Memorial Institute, Columbus, OH 43212, USA

    Google Scholar 

  163. Raymond L, Usell RJ (1968) Flaw growth in Ti-6Al-4V in Freon environments, Air Force Report No. SAMSO-TR-69-37, Space and Missile Systems Organization, Air Force Systems Command, Los Angeles Air Force Station, El Segundo, CA 90245, USA

    Google Scholar 

  164. Dull DL, Raymond L, Usell RJ (1969) Alloy compatibility with several cleaning agents, Air Force Report No. SAMSO-TR-69-178, Space and Missile Systems Organization, Air Force Systems Command, Los Angeles Air Force Station, El Segundo, CA 90245, USA

    Google Scholar 

  165. Williamson JG (1969) Stress corrosion cracking of Ti-6Al-4V titanium alloy in various fluids, NASA Technical Memorandum NASA TM X-53971, NASA Center for Aerospace Information, Linthicum Heights, MD 21090-2934, USA

    Google Scholar 

  166. Lisagor WB (1969) Some factors affecting the stress-corrosion cracking of Ti-6Al-4V alloy in methanol, NASA Technical Note NASA TN D-5557, National Aeronautics and Space Administration, Washington, D.C. 20546, USA

    Google Scholar 

  167. Chen CM, Kirkpatrick HB, Gegel HL (1972) Stress corrosion cracking of titanium alloys in methanolic and other media, Air Force Materials Laboratory Technical Report AFML-TR-71-232, Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, OH 45433, USA

    Google Scholar 

  168. Blackburn MJ, Smyrl WH, Feeney JA (1972) Titanium alloys. In: Brown BF (ed) Stress–corrosion cracking in high strength steels and in titanium and aluminum alloys. Naval Research Laboratory, Washington, D.C. 20375, and U.S. Government Printing Office, Washington, D.C. 20402, USA, pp 245–363

    Google Scholar 

  169. Johnson RE (1967) NASA experience with Ti-6Al-4V in methanol. In: Accelerated crack propagation of titanium by methanol, halogenated hydrocarbons, and other solutions, DMIC Memorandum 228, 6 March 1967, Defense Metals Information Center, Battelle Memorial Institute, Columbus, OH 43212, USA, pp 2–7

    Google Scholar 

  170. Sandoz G (1967) Effects of some organics on the stress corrosion susceptibility of some titanium alloys, ibid., pp 10–15

    Google Scholar 

  171. Herrigel HR (1967) Titanium U-bends in organic liquids, effect of inhibitors, ibid., pp 16–19

    Google Scholar 

  172. Seastrom CC, Gorski RA (1967) The influence of fluorocarbon solvents on titanium alloys, ibid., pp 20–28

    Google Scholar 

  173. Sedriks AJ (1967) Fracture behavior of titanium alloys in methanol environments, ibid., pp 43–47

    Google Scholar 

  174. Hurlich A (1967) Results of some Ti-6Al-4V—methanol experiments at Convair, ibid., p 54

    Google Scholar 

  175. Ritchie E, Glessner C (1967) Investigation of stress corrosion of electron-beam-welded and nonwelded Ti-6Al-4V in solutions of methanol and isopropyl alcohol at room temperature”, ibid., pp A-2‒A-5

    Google Scholar 

  176. Dietzel W, Müller-Roos J, Heitmann V (2005) An assessment of the SCC susceptibility of Ti-6Al-4V in IPA, ESA workshop in stress-corrosion cracking in spacecraft propulsion systems, 13 October 2005, European Space Agency ESA-ESTEC, Noordwijk, The Netherlands

    Google Scholar 

  177. Cao S (2017) The stress-corrosion cracking in Ti-8Al-1Mo-1V, Ph.D. thesis, Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3816, Australia

    Google Scholar 

  178. O’Brien R (1967) Premature environmental stress cracking of titanium in methanol, Freon, and other solutions. In: Accelerated crack propagation of titanium by methanol, halogenated hydrocarbons, and other solutions, DMIC Memorandum 228, March 6, 1967, Defense Metals Information Center, Battelle Memorial Institute, Columbus, OH 43212, USA, pp 8–9

    Google Scholar 

  179. Sandoz G (1969) Subcritical crack propagation in Ti-8Al-1Mo-1V alloy in organic environments, salt water, and inert environments. In: Staehle RW, Forty AJ, Van Rooyen D (eds) Proceedings of conference on fundamental aspects of stress corrosion cracking. National Association of Corrosion Engineers, Houston, TX 77084, USA, pp 684–690

    Google Scholar 

  180. Craig B (Reviewer) (1994) Technical Note 2: Corrosion*. In: Boyer R, Welsch G, Collings EW (eds) Materials properties handbook: titanium alloys, Fourth printing, August 2007. ASM International, Materials Park, OH 44073-0002, USA, p 1075

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell Wanhill .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wanhill, R., Windisch, M. (2018). Corrosion and Stress Corrosion Testing of Aerospace Vehicle Structural Alloys. In: Corrosion and Stress Corrosion Testing of Aerospace Vehicle Structural Alloys. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-89530-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89530-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89529-1

  • Online ISBN: 978-3-319-89530-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics