Skip to main content

Brain, Environment, Hormone-Based Appetite, Ingestive Behavior, and Body Weight

  • Chapter
  • First Online:
Textbook of Energy Balance, Neuropeptide Hormones, and Neuroendocrine Function

Abstract

Energy balance and appetite regulation are a complex process that integrates signals from homeostatic, hedonic, and environmental sources directing eating behavior. In addition to integrating homeostatic signals from the endocrine axis, the brain also drives eating behavior base on learned consummatory habits, sensory cues regarding the energy content and palatability of food, self-regulation, and the environment in which individuals live. This chapter will focus on how different internal and external factors influence central control of appetite, energy intake, and weight status, as well as how eating patterns may alter the brain’s response to food stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelaal, M., le Roux, C. W., & Docherty, N. G. (2017). Morbidity and mortality associated with obesity. Annals of Translational Medicine, 5(7), 161. https://doi.org/10.21037/atm.2017.03.107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anschutz, D. J., Engels, R. C. M. E., van der Zwaluw, C. S., & Van Strien, T. (2011). Sex differences in young adults’ snack food intake after food commercial exposure. Appetite, 56(2), 255–260.

    Article  PubMed  Google Scholar 

  • Anthony, K., Reed, L. J., Dunn, J. T., Bingham, E., Hopkins, D., Marsden, P. K., & Amiel, S. A. (2006). Attenuation of insulin-evoked responses in brain networks controlling appetite and reward in insulin resistance the cerebral basis for impaired control of food intake in metabolic syndrome? Diabetes, 55(11), 2986–2992.

    Article  CAS  PubMed  Google Scholar 

  • Appelhans, B. M., Woolf, K., Pagoto, S. L., Schneider, K. L., Whited, M. C., & Liebman, R. (2011). Inhibiting food reward: Delay discounting, food reward sensitivity, and palatable food intake in overweight and obese women. Obesity, 19(11), 2175–2182.

    Article  PubMed  Google Scholar 

  • Babbs, R. K., Sun, X., Felsted, J., Chouinard-Decorte, F., Veldhuizen, M. G., & Small, D. (2013). Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity. Physiology & Behavior.

    Article  CAS  Google Scholar 

  • Baicy, K., London, E. D., Monterosso, J., Wong, M.-L., Delibasi, T., Sharma, A., & Licinio, J. (2007). Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proceedings of the National Academy of Sciences, 104(46), 18276–18279. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2084333/pdf/zpq18276.pdf.

    Article  Google Scholar 

  • Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. Journal of Neuroscience, 27(31), 8161–8165. https://doi.org/10.1523/JNEUROSCI.1554-07.2007.

    Article  PubMed  CAS  Google Scholar 

  • Barnard, N. D., Noble, E. P., Ritchie, T., Cohen, J., Jenkins, D. J. A., Turner-McGrievy, G., et al. (2009). D2 dopamine receptor Taq1A polymorphism, body weight, and dietary intake in type 2 diabetes. Nutrition, 25(1), 58–65. https://doi.org/10.1016/j.nut.2008.07.012.

    Article  PubMed  CAS  Google Scholar 

  • Barthes, R. (1997). Toward a psychosociology of contemporary food consumption. Food and Culture: A Reader, 2, 28–35.

    Google Scholar 

  • Beaver, J. D., Lawrence, A. D., van Ditzhuijzen, J., Davis, M. H., Woods, A., & Calder, A. J. (2006). Individual differences in reward drive predict neural responses to images of food. Journal of Neuroscience, 26(19), 5160–5166. https://doi.org/10.1523/jneurosci.0350-06.2006.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. The European Journal of Neuroscience, 35(7), 1124–1143. https://doi.org/10.1111/j.1460-9568.2012.07990.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berridge, K. C., Ho, C.-Y., Richard, J. M., & DiFeliceantonio, A. G. (2010). The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders. Brain Research, 1350, 43–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birch, L. L., & Fisher, J. A. (1995). Appetite and eating behavior in children. Pediatric Clinics of North America, 42(4), 931–953.

    Article  CAS  PubMed  Google Scholar 

  • van Bloemendaal, L., Veltman, D. J., ten Kulve, J. S., Groot, P. F. C., RuhĂ©, H. G., Barkhof, F., et al. (2015). Brain reward-system activation in response to anticipation and consumption of palatable food is altered by glucagon-like peptide-1 receptor activation in humans. Diabetes, Obesity and Metabolism, 17(9), 878–886. https://doi.org/10.1111/dom.12506.

    Article  PubMed  CAS  Google Scholar 

  • Blum, K., Braverman, E. R., Wood, R. C., Gill, J., Li, C., Chen, T. J., et al. (1996). Increased prevalence of the Taq I A1 allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder: A preliminary report. Pharmacogenetics.

    Google Scholar 

  • Blundell, J. E., Goodson, S., & Halford, J. C. (2001). Regulation of appetite: Role of leptin in signalling systems for drive and satiety. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 25(Suppl 1), S29–S34. https://doi.org/10.1038/sj.ijo.0801693.

    Article  CAS  Google Scholar 

  • Boyland, E. J., & Whalen, R. (2015). Food advertising to children and its effects on diet: Review of recent prevalence and impact data. Pediatric Diabetes, 16(5), 331–337.

    Article  PubMed  Google Scholar 

  • Boyland, E. J., Nolan, S., Kelly, B., Tudur-Smith, C., Jones, A., Halford, J. C. G., & Robinson, E. (2016). Advertising as a cue to consume: A systematic review and meta-analysis of the effects of acute exposure to unhealthy food and nonalcoholic beverage advertising on intake in children and adults. The American Journal of Clinical Nutrition, ajcn120022.

    Google Scholar 

  • Bruce, A. S., Holsen, L. M., Chambers, R. J., Martin, L. E., Brooks, W. M., Zarcone, J. R., et al. (2010). Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. International Journal of Obesity, 34(10), 1494–1500. Retrieved from http://www.nature.com/ijo/journal/v34/n10/pdf/ijo201084a.pdf.

    Article  CAS  PubMed  Google Scholar 

  • BrĂĽning, J. C., Gautam, D., Burks, D. J., Gillette, J., Schubert, M., Orban, P. C., et al. (2000). Role of brain insulin receptor in control of body weight and reproduction. Science (New York, N.Y.), 289(5487), 2122–2125.

    Article  Google Scholar 

  • Burger, K. S. (2017). Frontostriatal and behavioral adaptations to daily sugar-sweetened beverage intake: A randomized controlled trial. The American Journal of Clinical Nutrition, 105(3), 555–563.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burger, K. S., & Stice, E. (2011). Variability in reward responsivity and obesity: Evidence from brain imaging studies. Current Drug Abuse Reviews, 4(3), 182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burger, K. S., & Stice, E. (2012). Frequent ice cream consumption is associated with reduced striatal response to receipt of an ice cream-based milkshake. The American Journal of Clinical Nutrition, 95(4), 810–817. https://doi.org/10.3945/ajcn.111.027003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burger, K. S., & Stice, E. (2013a). Elevated energy intake is correlated with hyperresponsivity in attentional, gustatory, and reward brain regions while anticipating palatable food receipt. The American Journal of Clinical Nutrition, 97(6), 1188–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger, K. S., & Stice, E. (2013b). Neural responsivity during soft drink intake, anticipation, and advertisement exposure in habitually consuming youth. Obesity, 22(2), 441–450. https://doi.org/10.1002/oby.20563.

    Article  PubMed  CAS  Google Scholar 

  • Burger, K. S., Cornier, M. A., Ingebrigtsen, J., & Johnson, S. L. (2011). Assessing food appeal and desire to eat: The effects of portion size & energy density. The International Journal of Behavioral Nutrition and Physical Activity, 8(1), 101. https://doi.org/10.1186/1479-5868-8-101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burger, K. S., Sanders, A. J., & Gilbert, J. R. (2016). Hedonic hunger is related to increased neural and perceptual responses to cues of palatable food and motivation to consume: Evidence from 3 independent investigations. The Journal of Nutrition, 146(9), 1807–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton, P., Smit, H. J., & Lightowler, H. J. (2007). The influence of restrained and external eating patterns on overeating. Appetite, 49(1), 191–197.

    Article  PubMed  Google Scholar 

  • Caravaggio, F., Borlido, C., Hahn, M., Feng, Z., Fervaha, G., Gerretsen, P., et al. (2015). Reduced insulin sensitivity is related to less endogenous dopamine at d2/3 receptors in the ventral striatum of healthy nonobese humans. The International Journal of Neuropsychopharmacology / Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum (CINP), 18(7), pyv014. https://doi.org/10.1093/ijnp/pyv014.

    Article  CAS  Google Scholar 

  • Chen, Y.-C., Jiao, Y., Cui, Y., Shang, S.-A., Ding, J., Feng, Y., et al. (2014). Aberrant brain functional connectivity related to insulin resistance in type 2 diabetes: A resting-state fMRI study. Diabetes Care, 37(6), 1689–1696. https://doi.org/10.2337/dc13-2127.

    Article  PubMed  CAS  Google Scholar 

  • Contreras-RodrĂ­guez, O., MartĂ­n-PĂ©rez, C., Vilar-LĂłpez, R., & Verdejo-Garcia, A. (2015). Ventral and dorsal striatum networks in obesity: Link to food craving and weight gain. Biological Psychiatry.

    Google Scholar 

  • Coppin, G., Nolan-Poupart, S., Jones-Gotman, M., & Small, D. M. (2014). Working memory and reward association learning impairments in obesity. Neuropsychologia, 65, 146–155. https://doi.org/10.1016/j.neuropsychologia.2014.10.004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornell, C. E., Rodin, J., & Weingarten, H. (1989). Stimulus-induced eating when satiated. Physiology & Behavior, 45(4), 695–704.

    Article  CAS  Google Scholar 

  • Cosgrove, K. P., Veldhuizen, M. G., Sandiego, C. M., Morris, E. D., & Small, D. M. (2015). Opposing relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the dorsal striatum. Synapse (New York, N.Y.), 69(4), 195–202. https://doi.org/10.1002/syn.21809.

    Article  CAS  Google Scholar 

  • Davis, C., & Claridge, G. (1998). The eating disorders as addiction: A psychobiological perspective. Addictive Behaviors, 23(4), 463–475.

    Article  CAS  PubMed  Google Scholar 

  • Davis, C., Strachan, S., & Berkson, M. (2004). Sensitivity to reward: Implications for overeating and overweight. Appetite, 42(2), 131–138. https://doi.org/10.1016/j.appet.2003.07.004.

    Article  PubMed  Google Scholar 

  • Dawe, S., & Loxton, N. J. (2004). The role of impulsivity in the development of substance use and eating disorders. Neuroscience and Biobehavioral Reviews, 28(3), 343–351. https://doi.org/10.1016/j.neubiorev.2004.03.007.

    Article  PubMed  Google Scholar 

  • Demos, K. E., Heatherton, T. F., & Kelley, W. M. (2012). Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. The Journal of Neuroscience, 32(16), 5549–5552. https://doi.org/10.1523/JNEUROSCI.5958-11.2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diliberti, N., Bordi, P. L., Conklin, M. T., Roe, L. S., & Rolls, B. J. (2004). Increased portion size leads to increased energy intake in a restaurant meal. Obesity, 12(3), 562–568.

    Article  Google Scholar 

  • Dimitropoulos, A., Tkach, J., Ho, A., & Kennedy, J. (2012). Greater corticolimbic activation to high-calorie food cues after eating in obese vs. normal-weight adults. Appetite, 58(1), 303–312. https://doi.org/10.1016/j.appet.2011.10.014.

    Article  PubMed  Google Scholar 

  • Dovey, T. M., Taylor, L., Stow, R., Boyland, E. J., & Halford, J. C. G. (2011). Responsiveness to healthy television (TV) food advertisements/commercials is only evident in children under the age of seven with low food neophobia. Appetite, 56(2), 440–446.

    Article  PubMed  Google Scholar 

  • Dunn, J. P., Kessler, R. M., Feurer, I. D., Volkow, N. D., Patterson, B. W., Ansari, M. S., et al. (2012). Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity. Diabetes Care, 35(5), 1105–1111. https://doi.org/10.2337/dc11-2250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elfhag, K., & Rossner, S. (2005). Who succeeds in maintaining weight loss? A conceptual review of factors associated with weight loss maintenance and weight regain. Obesity Reviews, 6(1), 67–85. https://doi.org/10.1111/j.1467-789X.2005.00170.x.

    Article  PubMed  CAS  Google Scholar 

  • Elfhag, K., Tynelius, P., & Rasmussen, F. (2007). Sugar-sweetened and artificially sweetened soft drinks in association to restrained, external and emotional eating. Physiology & Behavior, 91(2), 191–195.

    Article  CAS  Google Scholar 

  • Elks, C. E., den Hoed, M., Zhao, J. H., Sharp, S. J., Wareham, N. J., Loos, R. J. F., & Ong, K. K. (2012). Variability in the heritability of body mass index: A systematic review and meta-regression. Frontiers in Endocrinology, 3, 29. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22645519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ello-Martin, J. A., Ledikwe, J. H., & Rolls, B. J. (2005). The influence of food portion size and energy density on energy intake: Implications for weight management. The American Journal of Clinical Nutrition, 82(1), 236S–241S.

    Article  CAS  PubMed  Google Scholar 

  • Ello-Martin, J. A., Roe, L. S., Ledikwe, J. H., Beach, A. M., & Rolls, B. J. (2007). Dietary energy density in the treatment of obesity: A year-long trial comparing 2 weight-loss diets. The American Journal of Clinical Nutrition, 85(6), 1465–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ely, A. V., Howard, J., & Lowe, M. R. (2015). Delayed discounting and hedonic hunger in the prediction of lab-based eating behavior. Eating Behaviors, 19, 72–75.

    Article  PubMed  Google Scholar 

  • English, P. J., Ghatei, M. A., Malik, I. A., Bloom, S. R., & Wilding, J. P. H. (2002). Food fails to suppress ghrelin levels in obese humans. Journal of Clinical Endocrinology & Metabolism, 87(6), 2984.

    Article  CAS  Google Scholar 

  • Epstein, L. H., Temple, J. L., Neaderhiser, B. J., Salis, R. J., Erbe, R. W., & Leddy, J. J. (2007). Food reinforcement, the dopamine D2 receptor genotype, and energy intake in obese and nonobese humans. Behavioral Neuroscience, 121(5), 877–886. https://doi.org/10.1037/0735-7044.121.5.877.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faith, M. S., Berkowitz, R. I., Stallings, V. A., Kerns, J., Storey, M., & Stunkard, A. J. (2006). Eating in the absence of hunger: A genetic marker for childhood obesity in prepubertal boys? Obesity, 14(1), 131–138.

    Article  PubMed  Google Scholar 

  • Farooqi, I. S., Bullmore, E., Keogh, J., Gillard, J., O’Rahilly, S., & Fletcher, P. C. (2007). Leptin regulates striatal regions and human eating behavior. Science, 317(5843), 1355. https://doi.org/10.1126/science.1144599.

    Article  PubMed  CAS  Google Scholar 

  • Farr, O. M., Sofopoulos, M., Tsoukas, M. A., Dincer, F., Thakkar, B., Sahin-Efe, A., et al. (2016a). GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: A crossover, randomised, placebo-controlled. Diabetologia, 59(5), 954–965. https://doi.org/10.1007/s00125-016-3874-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farr, O. M., Tsoukas, M. A., Triantafyllou, G., Dincer, F., Filippaios, A., Ko, B.-J., & Mantzoros, C. S. (2016b). Short-term administration of the GLP-1 analog liraglutide decreases circulating leptin and increases GIP levels and these changes are associated with alterations in CNS responses to food cues: A randomized, placebo-controlled, crossover study. Metabolism, 65(7), 945–953. https://doi.org/10.1016/j.metabol.2016.03.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feldstein Ewing, S. W., Claus, E. D., Hudson, K. A., Filbey, F. M., Yakes Jimenez, E., Lisdahl, K. M., & Kong, A. S. (2016). Overweight adolescents’ brain response to sweetened beverages mirrors addiction pathways. Brain Imaging and Behavior. https://doi.org/10.1007/s11682-016-9564-z.

  • Felsted, J. A., Ren, X., Chouinard-Decorte, F., & Small, D. M. (2010). Genetically determined differences in brain response to a primary food reward. Journal of Neuroscience, 30(7), 2428–2432. https://doi.org/10.1523/jneurosci.5483-09.2010.

    Article  PubMed  CAS  Google Scholar 

  • Fetissov, S. O., Meguid, M. M., Sato, T., & Zhang, L.-H. (2002). Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rats and food intake. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(4), R905–R910. Retrieved from http://ajpregu.physiology.org/content/ajpregu/283/4/R905.full.pdf.

    Article  PubMed  Google Scholar 

  • Figlewicz, D. P., Szot, P., Chavez, M., Woods, S. C., & Veith, R. C. (1994). Intraventricular insulin increases dopamine transporter mRNA in rat VTA/substantia nigra. Brain Research, 644(2), 331–334.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, J. O., & Kral, T. V. E. (2008). Super-size me: Portion size effects on young children’s eating. Physiology & Behavior, 94(1), 39–47.

    Article  CAS  Google Scholar 

  • Fisher, J. O., Rolls, B. J., & Birch, L. L. (2003). Children’s bite size and intake of an entree are greater with large portions than with age-appropriate or self-selected portions. The American Journal of Clinical Nutrition, 77(5), 1164–1170.

    Article  CAS  PubMed Central  Google Scholar 

  • Flegal, K. M., Carroll, M. D., Kit, B. K., & Ogden, C. L. (2012). Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. Jama-Journal of the American Medical Association, 307(5), 491–497. https://doi.org/10.1001/jama.2012.39.

    Article  Google Scholar 

  • Flegal, K. M., Kruszon-Moran, D., Carroll, M. D., Fryar, C. D., & Ogden, C. L. (2016). Trends in obesity among adults in the United States, 2005 to 2014. JAMA, 315(21), 2284. https://doi.org/10.1001/jama.2016.6458.

    Article  PubMed  CAS  Google Scholar 

  • Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. (2007). Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16311–16316. https://doi.org/10.1073/pnas.0706111104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank, G. K. W., Reynolds, J. R., Shott, M. E., Jappe, L., Yang, T. T., Tregellas, J. R., & O’Reilly, R. C. (2012). Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology, 37(9), 2031–2046. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398719/pdf/npp201251a.pdf.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankort, A., Roefs, A., Siep, N., Roebroeck, A., Havermans, R., & Jansen, A. (2012). Reward activity in satiated overweight women is decreased during unbiased viewing but increased when imagining taste: An event-related fMRI study. International Journal of Obesity, 36(5), 627–637. https://doi.org/10.1038/ijo.2011.213.

    Article  PubMed  CAS  Google Scholar 

  • Gallwitz, B. (2012). Anorexigenic effects of GLP-1 and its analogues. In Handbook of experimental pharmacology (pp. 185–207). https://doi.org/10.1007/978-3-642-24716-3_8.

    Google Scholar 

  • Geha, P. Y., Aschenbrenner, K., Felsted, J., O’Malley, S. S., & Small, D. M. (2013). Altered hypothalamic response to food in smokers. The American Journal of Clinical Nutrition, 97(1), 15–22. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522134/pdf/ajcn97115.pdf.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, J. R., & Burger, K. S. (2016). Neuroadaptive processes associated with palatable food intake: Present data and future directions. Current Opinion in Behavioral Sciences, 9, 91–96.

    Article  Google Scholar 

  • Goldstone, A. P., Prechtl, C. G., Scholtz, S., Miras, A. D., Chhina, N., Durighel, G., et al. (2014). Ghrelin mimics fasting to enhance human hedonic, orbitofrontal cortex, and hippocampal responses to food. The American Journal of Clinical Nutrition, 99(6), 1319–1330. https://doi.org/10.3945/ajcn.113.075291.

    Article  PubMed  CAS  Google Scholar 

  • Green, E., & Murphy, C. (2012). Altered processing of sweet taste in the brain of diet soda drinkers. Physiology & Behavior, 107(4), 560–567.

    Article  CAS  Google Scholar 

  • Green, E., Jacobson, A., Haase, L., & Murphy, C. (2011). Reduced nucleus accumbens and caudate nucleus activation to a pleasant taste is associated with obesity in older adults. Brain Research, 1386, 109–117. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086067/pdf/nihms284828.pdf.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Groot, C., Felius, A., Trompet, S., de Craen, A. J. M., Blauw, G. J., van Buchem, M. A., et al. (2015). Association of the fat mass and obesity-associated gene risk allele, rs9939609A, and reward-related brain structures. Obesity, 23(10), 2118–2122. https://doi.org/10.1002/oby.21191.

    Article  PubMed  CAS  Google Scholar 

  • Grosshans, M., Vollmert, C., Vollstädt-Klein, S., Tost, H., Leber, S., Bach, P., et al. (2012). Association of leptin with food cue-induced activation in human reward pathways. Archives of General Psychiatry, 69(5), 529–537. https://doi.org/10.1001/archgenpsychiatry.2011.1586.

    Article  PubMed  CAS  Google Scholar 

  • Haan, M. N. (2006). Therapy insight: Type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease. Nature Clinical Practice. Neurology, 2(3), 159–166. https://doi.org/10.1038/ncpneuro0124.

    Article  PubMed  CAS  Google Scholar 

  • Halford, J. C. G., Boyland, E. J., Hughes, G., Oliveira, L. P., & Dovey, T. M. (2007). Beyond-brand effect of television (TV) food advertisements/commercials on caloric intake and food choice of 5–7-year-old children. Appetite, 49(1), 263–267.

    Article  PubMed  Google Scholar 

  • Hallschmid, M., Higgs, S., Thienel, M., Ott, V., & Lehnert, H. (2012). Postprandial administration of intranasal insulin intensifies satiety and reduces intake of palatable snacks in women. Diabetes, 61(4), 782–789. https://doi.org/10.2337/db11-1390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris, R. B. (1990). Role of set-point theory in regulation of body weight. The FASEB Journal, 4(15), 3310–3318.

    Article  CAS  PubMed  Google Scholar 

  • Harris, J. L., Bargh, J. A., & Brownell, K. D. (2009). Priming Effects of Television Food Advertising on Eating Behavior, 28(4), 404–413. https://doi.org/10.1037/a0014399.

    Article  Google Scholar 

  • Heni, M., Kullmann, S., Ketterer, C., Guthoff, M., Bayer, M., Staiger, H., et al. (2014a). Differential effect of glucose ingestion on the neural processing of food stimuli in lean and overweight adults. Human Brain Mapping, 35(3), 918–928. https://doi.org/10.1002/hbm.22223.

    Article  PubMed  Google Scholar 

  • Heni, M., Kullmann, S., Veit, R., Ketterer, C., Frank, S., Machicao, F., et al. (2014b). Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex. Molecular Metabolism, 3(2), 109–113. https://doi.org/10.1016/j.molmet.2013.11.009.

    Article  PubMed  CAS  Google Scholar 

  • Heni, M., Kullmann, S., Gallwitz, B., Häring, H.-U., Preissl, H., & Fritsche, A. (2015). Dissociation of GLP-1 and insulin association with food processing in the brain: GLP-1 sensitivity despite insulin resistance in obese humans. Molecular Metabolism, 4(12), 971–976. https://doi.org/10.1016/j.molmet.2015.09.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heni, M., Wagner, R., Kullmann, S., Gancheva, S., Roden, M., Peter, A., et al. (2017). Hypothalamic and Striatal insulin action suppresses endogenous glucose production and may stimulate glucose uptake during Hyperinsulinemia in lean but not in overweight men. Diabetes, db161380. https://doi.org/10.2337/db16-1380.

  • Herman, C. P., & Mack, D. (1975). Restrained and unrestrained eating. Journal of Personality, 43(4), 647–660.

    Article  CAS  PubMed  Google Scholar 

  • Herman, C. P., & Polivy, J. (2008). External cues in the control of food intake in humans: The sensory-normative distinction. Physiology & Behavior, 94(5), 722–728.

    Article  CAS  Google Scholar 

  • Hess, M. E., Hess, S., Meyer, K. D., Verhagen, W. L. A., Koch, L., Brönneke, H. S., et al. (2013). The fat mass and obesity associated gene (FTO) regulates activity of the dopaminergic midbrain circuitry. Nature Publishing Group, 16. https://doi.org/10.1038/nn.3449.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X.-F., Zavitsanou, K., Huang, X., Yu, Y., Wang, H., Chen, F., et al. (2006). Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity. Behavioural Brain Research, 175(2), 415–419.

    Article  CAS  PubMed  Google Scholar 

  • Hui, H., Farilla, L., Merkel, P., & Perfetti, R. (2002). The short half-life of glucagon-like peptide-1 in plasma does not reflect its long-lasting beneficial effects. European Journal of Endocrinology, 146(6), 863–869.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson, P., Torgerson, J. S., Sjostrom, L., & Bouchard, C. (2006). Spouse resemblance in body mass index: Effects on adult obesity prevalence in the offspring generation. American Journal of Epidemiology, 165(1), 101–108. https://doi.org/10.1093/aje/kwj342.

    Article  PubMed  Google Scholar 

  • Jastreboff, A. M., Sinha, R., Lacadie, C., Small, D. M., Sherwin, R. S., & Potenza, M. N. (2013). Neural correlates of stress- and food cue-induced food craving in obesity: Association with insulin levels. Diabetes Care, 36(2), 394–402. https://doi.org/10.2337/dc12-1112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jastreboff, A. M., Lacadie, C., Seo, D., Kubat, J., Van Name, M. A., Giannini, C., et al. (2014). Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity. Diabetes Care, 37(11), 3061–3068. https://doi.org/10.2337/dc14-0525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jauch-Chara, K., Friedrich, A., Rezmer, M., Melchert, U. H., Scholand-Engler, G., Hallschmid, H. M., & Oltmanns, K. M. (2012). Intranasal insulin suppresses food intake via enhancement of brain energy levels in humans. Diabetes, 61(9), 2261–2268. https://doi.org/10.2337/db12-0025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chemical Biology, 7(12), 885–887. https://doi.org/10.1038/nchembio.687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson, P. M., & Kenny, P. J. (2010). Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nature Neuroscience, 13(5), 635–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, F., & Wardle, J. (2014). Variety, palatability, and obesity. Advances in Nutrition (Bethesda, Md.), 5(6), 851–859. https://doi.org/10.3945/an.114.007120.

    Article  Google Scholar 

  • Johnson, F., Pratt, M., & Wardle, J. (2012). Dietary restraint and self-regulation in eating behavior. International Journal of Obesity, 36(5), 665–674.

    Article  CAS  PubMed  Google Scholar 

  • Kalra, S. P. (2001). Circumventing leptin resistance for weight control. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4279–4281. https://doi.org/10.1073/pnas.091101498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karra, E., O’Daly, O. G., Choudhury, A. I., Yousseif, A., Millership, S., Neary, M. T., et al. (2013). A link between FTO, ghrelin, and impaired brain food-cue responsivity. The Journal of Clinical Investigation, 123(8), 3539–3551. https://doi.org/10.1172/JCI44403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirsch, P., Reuter, M., Mier, D., Lonsdorf, T., Stark, R., Gallhofer, B., et al. (2006). Imaging gene-substance interactions: The effect of the DRD2 TaqIA polymorphism and the dopamine agonist bromocriptine on the brain activation during the anticipation of reward. Neuroscience Letters, 405(3), 196–201. https://doi.org/10.1016/j.neulet.2006.07.030.

    Article  PubMed  CAS  Google Scholar 

  • Kling, S. M. R., Roe, L. S., Keller, K. L., & Rolls, B. J. (2016). Double trouble: Portion size and energy density combine to increase preschool children’s lunch intake. Physiology & Behavior, 162, 18–26.

    Article  CAS  Google Scholar 

  • Koordeman, R., Anschutz, D. J., van Baaren, R. B., & Engels, R. C. M. E. (2010). Exposure to soda commercials affects sugar-sweetened soda consumption in young women. An observational experimental study. Appetite, 54(3), 619–622.

    Article  PubMed  Google Scholar 

  • Kroemer, N. B., & Small, D. M. (2016). Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity. Physiology & Behavior, 162, 37–45. https://doi.org/10.1016/j.physbeh.2016.04.020.

    Article  CAS  Google Scholar 

  • Kroemer, N. B., Krebs, L., Kobiella, A., Grimm, O., Vollstädt-Klein, S., Wolfensteller, U., et al. (2013). (still) longing for food: Insulin reactivity modulates response to food pictures. Human Brain Mapping, 34(10), 2367–2380. https://doi.org/10.1002/hbm.22071.

    Article  PubMed  Google Scholar 

  • Kullmann, S., Heni, M., Veit, R., Ketterer, C., Schick, F., Häring, H.-U. H. H.-U., et al. (2012). The obese brain: Association of body mass index and insulin sensitivity with resting state network functional connectivity. Human Brain Mapping, 33(5), 1052–1061. https://doi.org/10.1002/hbm.21268.

    Article  PubMed  Google Scholar 

  • Kumar, S., Raju, M., & Gowda, N. (2010). Influence of parental obesity on school children. The Indian Journal of Pediatrics, 77(3), 255–258. https://doi.org/10.1007/s12098-010-0015-3.

    Article  PubMed  Google Scholar 

  • Kunath, N., MĂĽller, N. C. J., Tonon, M., Konrad, B. N., Pawlowski, M., Kopczak, A., et al. (2016). Ghrelin modulates encoding-related brain function without enhancing memory formation in humans. NeuroImage, 142, 465–473. https://doi.org/10.1016/j.neuroimage.2016.07.016.

    Article  PubMed  CAS  Google Scholar 

  • Langeveld, M., & DeVries, J. H. (2015). The long-term effect of energy restricted diets for treating obesity. Obesity, 23(8), 1529–1538. https://doi.org/10.1002/oby.21146.

    Article  PubMed  Google Scholar 

  • Ledikwe, J. H., Blanck, H. M., Khan, L. K., Serdula, M. K., Seymour, J. D., Tohill, B. C., & Rolls, B. J. (2006). Low-energy-density diets are associated with high diet quality in adults in the United States. Journal of the American Dietetic Association, 106(8), 1172–1180.

    Article  PubMed  Google Scholar 

  • Ledikwe, J. H., Rolls, B. J., Smiciklas-Wright, H., Mitchell, D. C., Ard, J. D., Champagne, C., et al. (2007). Reductions in dietary energy density are associated with weight loss in overweight and obese participants in the PREMIER trial. The American Journal of Clinical Nutrition, 85(5), 1212–1221.

    Article  CAS  PubMed  Google Scholar 

  • Leibel, R. L. (2008). Molecular physiology of weight regulation in mice and humans. International Journal of Obesity, 32, S98–S108.

    Article  CAS  PubMed  Google Scholar 

  • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412 (6843), 150.

    Article  CAS  PubMed  Google Scholar 

  • Loos, R. J. F., & Yeo, G. S. H. (2014). The bigger picture of FTO: The first GWAS-identified obesity gene. Nature Reviews. Endocrinology, 10(1), 51–61. https://doi.org/10.1038/nrendo.2013.227.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, M. R., & Butryn, M. L. (2007). Hedonic hunger: A new dimension of appetite? Physiology & Behavior, 91(4), 432–439. https://doi.org/10.1016/j.physbeh.2007.04.006.

    Article  CAS  Google Scholar 

  • Lowe, M. R., Butryn, M. L., Didie, E. R., Annunziato, R. A., Thomas, J. G., Crerand, C. E., et al. (2009). The power of food scale. A new measure of the psychological influence of the food environment. Appetite, 53(1), 114–118. https://doi.org/10.1016/j.appet.2009.05.016.

    Article  PubMed  Google Scholar 

  • Lowe, M. R., Arigo, D., Butryn, M. L., Gilbert, J. R., Sarwer, D., & Stice, E. (2016). Hedonic hunger prospectively predicts onset and maintenance of loss of control eating among college women. Health Psychology, 35(3), 238.

    Article  PubMed  Google Scholar 

  • MacLean, P. S., Wing, R. R., Davidson, T., Epstein, L., Goodpaster, B., Hall, K. D., et al. (2015). NIH working group report: Innovative research to improve maintenance of weight loss. Obesity, 23(1), 7–15. https://doi.org/10.1002/oby.20967.

    Article  PubMed  Google Scholar 

  • Malik, S., McGlone, F., Bedrossian, D., & Dagher, A. (2008). Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metabolism, 7(5), 400–409. Retrieved from http://ac.els-cdn.com/S1550413108000788/1-s2.0-S1550413108000788-main.pdf?_tid=443beeaa-e1de-11e3-8bb1-00000aab0f6c&acdnat=1400783229_25281b85b5a58e9889dc4a0aa30cb36d.

    Article  CAS  PubMed  Google Scholar 

  • Man, M. S., Clarke, H. F., & Roberts, A. C. (2009). The role of the orbitofrontal cortex and medial striatum in the regulation of prepotent responses to food rewards. Cerebral Cortex, 19(4), 899–906. Retrieved from http://cercor.oxfordjournals.org/content/19/4/899.full.pdf.

    Article  CAS  PubMed  Google Scholar 

  • Martin, C. K., Coulon, S. M., Markward, N., Greenway, F. L., & Anton, S. D. (2009a). Association between energy intake and viewing television, distractibility, and memory for advertisements. The American Journal of Clinical Nutrition, 89(1), 37–44.

    Article  CAS  PubMed  Google Scholar 

  • Martin, L. E., Holsen, L. M., Chambers, R. J., Bruce, A. S., Brooks, W. M., Zarcone, J. R., et al. (2009b). Neural mechanisms associated with food motivation in obese and healthy weight adults. Obesity, 18(2), 254–260. Retrieved from http://onlinelibrary.wiley.com/store/10.1038/oby.2009.220/asset/oby.2009.220.pdf?v=1&t=hvie1us5&s=9e7326e9ee6e5317496a95a030883ab36244d626.

    Article  PubMed  Google Scholar 

  • Mathar, D., Neumann, J., Villringer, A., & Horstmann, A. (2017). Failing to learn from negative prediction errors: Obesity is associated with alterations in a fundamental neural learning mechanism. Cortex. https://doi.org/10.1016/j.cortex.2017.08.022.

  • Mayer, J. (1953). Glucostatic mechanism of regulation of food intake. The New England Journal of Medicine, 249(1), 13–16. https://doi.org/10.1056/NEJM195307022490104.

    Article  PubMed  CAS  Google Scholar 

  • Merchenthaler, I., Lane, M., & Shughrue, P. (1999). Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. The Journal of Comparative Neurology, 403(2), 261–280. https://doi.org/10.1002/(SICI)1096-9861(19990111)403:2<261::AID-CNE8=3.0.CO;2-5.

    Article  PubMed  CAS  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167.

    Article  PubMed  CAS  Google Scholar 

  • Murray, S., Tulloch, A., Gold, M. S., & Avena, N. M. (2014). Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nature Reviews. Endocrinology, 10(9), 540–552. https://doi.org/10.1038/nrendo.2014.91.

    Article  PubMed  CAS  Google Scholar 

  • ten Kulve, J. S., Veltman, D. J., van Bloemendaal, L., Groot, P. F. C., RuhĂ©, H. G., Barkhof, F., et al. (2016). Endogenous GLP1 and GLP1 analogue alter CNS responses to palatable food consumption. Journal of Endocrinology, 229(1), 1–12. https://doi.org/10.1530/JOE-15-0461.

    Article  PubMed  CAS  Google Scholar 

  • Ng, J., Stice, E., Yokum, S., & Bohon, C. (2011). An fMRI study of obesity, food reward, and perceived caloric density. Does a low-fat label make food less appealing? Appetite, 57(1), 65–72. https://doi.org/10.1016/j.appet.2011.03.017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nummenmaa, L., Hirvonen, J., Hannukainen, J. C., Immonen, H., Lindroos, M. M., Salminen, P., & Nuutila, P. (2012). Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PLoS One, 7(2). https://doi.org/10.1371/journal.pone.0031089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page, K. A., Chan, O., Arora, J., Belfort-Deaguiar, R., Dzuira, J., Roehmholdt, B., et al. (2013). Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA, 309(1), 63–70. https://doi.org/10.1001/jama.2012.116975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pliquett, R. U., FĂĽhrer, D., Falk, S., Zysset, S., von Cramon, D. Y., & Stumvoll, M. (2006). The effects of insulin on the central nervous system--focus on appetite regulation. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et MĂ©tabolisme, 38(7), 442–446. https://doi.org/10.1055/s-2006-947840.

    Article  PubMed  CAS  Google Scholar 

  • Polivy, J., & Herman, C. P. (1985). Dieting and binging: A causal analysis. American Psychologist, 40(2), 193.

    Article  CAS  PubMed  Google Scholar 

  • Porubská, K., Veit, R., Preissl, H., Fritsche, A., & Birbaumer, N. (2006). Subjective feeling of appetite modulates brain activity: An fMRI study. NeuroImage, 32(3), 1273–1280. https://doi.org/10.1016/j.neuroimage.2006.04.216.

    Article  PubMed  Google Scholar 

  • Potter, G. M., Moshirfar, A., & Castonguay, T. W. (1999). Insulin affects dopamine overflow in the nucleus accumbens and the striatum. Physiology & Behavior, 65(4–5), 811–816.

    CAS  Google Scholar 

  • Powell, L. M., Szczypka, G., Chaloupka, F. J., & Braunschweig, C. L. (2007). Nutritional content of television food advertisements seen by children and adolescents in the United States. Pediatrics, 120(3), 576–583. https://doi.org/10.1542/peds.2006-3595.

    Article  PubMed  Google Scholar 

  • Rath, S. R., Marsh, J. A., Newnham, J. P., Zhu, K., Atkinson, H. C., Mountain, J., et al. (2016). Parental pre-pregnancy BMI is a dominant early-life risk factor influencing BMI of offspring in adulthood. Obesity Science & Practice, 2(1), 48–57. https://doi.org/10.1002/osp4.28.

    Article  CAS  Google Scholar 

  • Rogers, P. J., & Brunstrom, J. M. (2016). Appetite and energy balancing. Physiology & Behavior. https://doi.org/10.1016/j.physbeh.2016.03.038.

    Article  CAS  Google Scholar 

  • Rolls, B. J., & Barnett, R. A. (2000). Volumetrics. HarperCollins.

    Google Scholar 

  • Rolls, B. J., Rowe, E. A., & Rolls, E. T. (1982). How flavour and appearance affect human feeding. Proceedings of the Nutrition Society, 41(2), 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Rolls, B. J., Morris, E. L., & Roe, L. S. (2002). Portion size of food affects energy intake in normal-weight and overweight men and women. The American Journal of Clinical Nutrition, 76(6), 1207–1213.

    Article  CAS  PubMed  Google Scholar 

  • Rolls, B. J., Roe, L. S., Meengs, J. S., & Wall, D. E. (2004a). Increasing the portion size of a sandwich increases energy intake. Journal of the American Dietetic Association, 104(3), 367–372.

    Article  PubMed  Google Scholar 

  • Rolls, B. J., Roe, L. S., Kral, T. V. E., Meengs, J. S., & Wall, D. E. (2004b). Increasing the portion size of a packaged snack increases energy intake in men and women. Appetite, 42(1), 63–69.

    Article  PubMed  Google Scholar 

  • Rolls, B. J., Roe, L. S., & Meengs, J. S. (2006). Larger portion sizes lead to a sustained increase in energy intake over 2 days. Journal of the American Dietetic Association, 106(4), 543–549.

    Article  PubMed  Google Scholar 

  • Rolls, B. J., Roe, L. S., James, B. L., & Sanchez, C. E. (2017). Does the incorporation of portion-control strategies in a behavioral program improve weight loss in a one-year randomized controlled trial? International Journal of Obesity (2005), 41(3), 434.

    Article  CAS  Google Scholar 

  • Rothemund, Y., Preuschhof, C., Bohner, G., Bauknecht, H.-C., Klingebiel, R., Flor, H., & Klapp, B. F. (2007). Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. NeuroImage, 37(2), 410–421. https://doi.org/10.1016/j.neuroimage.2007.05.008.

    Article  PubMed  Google Scholar 

  • Rudenga, K. J., & Small, D. M. (2012). Amygdala response to sucrose consumption is inversely related to artificial sweetener use. Appetite, 58(2), 504–507. https://doi.org/10.1016/j.appet.2011.12.001.

    Article  PubMed  CAS  Google Scholar 

  • Salbe, A. D., Weyer, C., Harper, I., Lindsay, R. S., Ravussin, E., & Tataranni, P. A. (2002). Assessing risk factors for obesity between childhood and adolescence : II. Energy Metabolism and Physical Activity, 110(2), 307–314.

    Google Scholar 

  • Sandoval, D., & Sisley, S. R. (2015). Brain GLP-1 and insulin sensitivity. Molecular and Cellular Endocrinology. https://doi.org/10.1016/j.mce.2015.02.017.

  • Schlogl, H., Kabisch, S., Horstmann, A., Lohmann, G., Muller, K., Lepsien, J., et al. (2013). Exenatide-induced reduction in energy intake is associated with increase in hypothalamic connectivity. Diabetes Care, 36(7), 1933–1940. https://doi.org/10.2337/dc12-1925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schultes, B., Ernst, B., Wilms, B., Thurnheer, M., & Hallschmid, M. (2010). Hedonic hunger is increased in severely obese patients and is reduced after gastric bypass surgery. The American Journal of Clinical Nutrition, 92, 277–283. https://doi.org/10.3945/ajcn.2009.29007.INTRODUCTION.

    Article  PubMed  CAS  Google Scholar 

  • Seppälä-Lindroos, A., Vehkavaara, S., Häkkinen, A.-M., Goto, T., Westerbacka, J., Sovijärvi, A., et al. (2002). Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. The Journal of Clinical Endocrinology & Metabolism, 87(7), 3023–3028. https://doi.org/10.1210/jcem.87.7.8638.

    Article  Google Scholar 

  • Sevgi, M., Rigoux, L., Kuhn, A. B., Mauer, J., Schilbach, L., Hess, M. E., et al. (2015). An obesity-predisposing variant of the FTO gene regulates D2R-dependent reward learning. Journal of Neuroscience, 35(36), 12584–12592. https://doi.org/10.1523/JNEUROSCI.1589-15.2015.

    Article  PubMed  CAS  Google Scholar 

  • Shearrer, G., Stice, E., & Burger, K. (2017). Adolescents with versus without parental obesity show greater striatal response to increased sugar, but not fat content of milkshakes. https://doi.org/10.17605/OSF.IO/7J4EH.

  • Simon, J. J., Skunde, M., Hamze Sinno, M., Brockmeyer, T., Herpertz, S. C., Bendszus, M., et al. (2014). Impaired cross-talk between Mesolimbic food reward processing and metabolic signaling predicts body mass index. Frontiers in Behavioral Neuroscience, 8, 359. https://doi.org/10.3389/fnbeh.2014.00359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Small, C. J., & Bloom, S. R. (2004). Gut hormones as peripheral anti obesity targets. Current Drug Targets. CNS and Neurological Disorders, 3(5), 379–388.

    Article  CAS  PubMed  Google Scholar 

  • Stice, E., Spoor, S., Bohon, C., Veldhuizen, M. G., & Small, D. M. (2008a). Relation of reward from food intake and anticipated food intake to obesity: A functional magnetic resonance imaging study. Journal of Abnormal Psychology, 117(4), 924–935. https://doi.org/10.1037/a0013600.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stice, E., Spoor, S., Bohon, C., & Small, D. M. (2008b). Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science, 322(5900), 449–452. https://doi.org/10.1126/science.1161550.

    Article  PubMed  CAS  Google Scholar 

  • Stice, E., Yokum, S., Bohon, C., Marti, N., & Smolen, A. (2010a). Reward circuitry responsivity to food predicts future increases in body mass: Moderating effects of DRD2 and DRD4. NeuroImage, 50(4), 1618–1625. https://doi.org/10.1016/j.neuroimage.2010.01.081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stice, E., Yokum, S., Blum, K., & Bohon, C. (2010b). Weight gain is associated with reduced Striatal response to palatable food. Journal of Neuroscience, 30(39), 13105–13109. https://doi.org/10.1523/jneurosci.2105-10.2010.

    Article  PubMed  CAS  Google Scholar 

  • Stice, E., Yokum, S., Burger, K. S., Epstein, L. H., & Small, D. M. (2011). Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. The Journal of Neuroscience, 31(12), 4360–4366. https://doi.org/10.1523/JNEUROSCI.6604-10.2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stice, E., Burger, K. S., & Yokum, S. (2015). Reward region Responsivity predicts future weight gain and moderating effects of the TaqIA allele. The Journal of Neuroscience, 35(28), 10316–10324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeckel, L. E., Weller, R. E., Cook, E. W., III, Twieg, D. B., Knowlton, R. C., & Cox, J. E. (2008). Widespread reward-system activation in obese women in response to pictures of high-calorie foods. NeuroImage, 41(2), 636–647. https://doi.org/10.1016/j.neuroimage.2008.02.031.

    Article  PubMed  Google Scholar 

  • Sun, X., Veldhuizen, M. G., Wray, A. E., de Araujo, I. E., Sherwin, R. S., Sinha, R., & Small, D. M. (2014). The neural signature of satiation is associated with ghrelin response and triglyceride metabolism. Physiology & Behavior, 136, 63–73. https://doi.org/10.1016/j.physbeh.2014.04.017.

    Article  CAS  Google Scholar 

  • Sun, X., Kroemer, N. B., Veldhuizen, M. G., Babbs, A. E., de Araujo, I. E., Gitelman, D. R., et al. (2015). Basolateral Amygdala response to food cues in the absence of hunger is associated with weight gain susceptibility. The Journal of Neuroscience, 35(20), 7964–7976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, X., Veldhuizen, M. G., Babbs, A. E., Sinha, R., & Small, D. M. (2016). Perceptual and brain response to odors is associated with body mass index and postprandial Total Ghrelin reactivity to a meal. Chemical Senses, 41(3), 233–248. https://doi.org/10.1093/chemse/bjv081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, X., Luquet, S., & Small, D. M. (2017). DRD2: Bridging the genome and Ingestive behavior. Trends in Cognitive Sciences, 21(5), 372–384. https://doi.org/10.1016/j.tics.2017.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Svetkey, L. P., Stevens, V. J., Brantley, P. J., Appel, L. J., Hollis, J. F., Loria, C. M., et al. (2008). Comparison of strategies for sustaining weight loss: The weight loss maintenance randomized controlled trial. JAMA, 299(10), 1139–1148.

    Article  CAS  PubMed  Google Scholar 

  • Thanos, P. K., Michaelides, M., Piyis, Y. K., Wang, G.-J., & Volkow, N. D. (2008). Food restriction markedly increases dopamine d2 receptor (D2R) in a rat model of obesity as assessed with in-vivo mu PET imaging ( C-11 raclopride) and in-vitro ( H-3 spiperone) autoradiography. Synapse, 62(1), 50–61. https://doi.org/10.1002/syn.20468.

    Article  PubMed  CAS  Google Scholar 

  • Tomkin, G. H. (2014). Treatment of type 2 diabetes, lifestyle, GLP1 agonists and DPP4 inhibitors. World Journal of Diabetes, 5(5), 636–650. https://doi.org/10.4239/wjd.v5.i5.636.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tschöp, M., Weyer, C., Tataranni, P. A., Devanarayan, V., Ravussin, E., & Heiman, M. L. (2001). Circulating ghrelin levels are decreased in human obesity. Diabetes, 50(4), 707–709.

    Article  PubMed  Google Scholar 

  • Ubeda-Bañon, I., Novejarque, A., Mohedano-Moriano, A., Pro-Sistiaga, P., de la Rosa-Prieto, C., Insausti, R., et al. (2007). Projections from the posterolateral olfactory amygdala to the ventral striatum: Neural basis for reinforcing properties of chemical stimuli. BMC Neuroscience, 8(1), 103. https://doi.org/10.1186/1471-2202-8-103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Strien, T., Frijters, J. E. R., Bergers, G., Defares, P. B., Van Strien, T., Frijters, J. E. R., et al. (1986). The Dutch eating behavior questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. International Journal of Eating Disorders, 5(2), 295–315. https://doi.org/10.1002/1098-108X(198602)5:2<295::AID-EAT2260050209=3.0.CO;2-T.

    Article  Google Scholar 

  • Van Strien, T., Herman, C. P., & Verheijden, M. W. (2009). Eating style, overeating, and overweight in a representative Dutch sample. Does external eating play a role? Appetite, 52(2), 380–387.

    Article  PubMed  Google Scholar 

  • Verdejo-GarcĂ­a, A., Lawrence, A. J., & Clark, L. (2008). Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research, problem gamblers and genetic association studies. Neuroscience & Biobehavioral Reviews, 32(4), 777–810.

    Article  Google Scholar 

  • Verdich, C., Toubro, S., Buemann, B., LysgĂĄrd Madsen, J., Juul Holst, J., & Astrup, A. (2001). The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—Effect of obesity and weight reduction. International Journal of Obesity & Related Metabolic Disorders, 25(8).

    Article  CAS  PubMed  Google Scholar 

  • Visser, P. J., Scheltens, P., Verhey, F. R. J., Schmand, B., Launer, L. J., Jolles, J., & Jonker, C. (1999). Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. Journal of Neurology, 246(6), 477–485. https://doi.org/10.1007/s004150050387.

    Article  PubMed  CAS  Google Scholar 

  • Volkow, N. D., Wang, G.-J. J., Telang, F., Fowler, J. S., Thanos, P. K., Logan, J., et al. (2008). Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: Possible contributing factors. NeuroImage, 42(4), 1537–1543. https://doi.org/10.1016/j.neuroimage.2008.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vukmirovic, M. (2015). The effects of food advertising on food-related behaviours and perceptions in adults: A review. Food Research International, 75, 13–19.

    Article  PubMed  Google Scholar 

  • Wallner-Liebmann, S., Koschutnig, K., Reishofer, G., Sorantin, E., Blaschitz, B., Kruschitz, R., et al. (2010). Insulin and hippocampus activation in response to images of high-calorie food in normal weight and obese adolescents. Obesity (Silver Spring, Md.), 18(8), 1552–1557. https://doi.org/10.1038/oby.2010.26.

    Article  CAS  Google Scholar 

  • Wang, G.-J., Volkow, N. D., Logan, J., Pappas, N. R., Wong, C. T., Zhu, W., et al. (2001). Brain dopamine and obesity. The Lancet, 357(9253), 354–357. https://doi.org/10.1016/S0140-6736(00)03643-6.

    Article  CAS  Google Scholar 

  • Wang, G.-J., Volkow, N. D., Thanos, P. K., & Fowler, J. S. (2004). Similarity between obesity and drug addiction as assessed by neurofunctional imaging: A concept review. Journal of Addictive Diseases, 23(3), 39–53.

    Article  PubMed  Google Scholar 

  • Wardle, J., Guthrie, C., Sanderson, S., Birch, L., & Plomin, R. (2001). Food and activity preferences in children of lean and obese parents. International Journal of Obesity, 25(7), 971–977. https://doi.org/10.1038/sj.ijo.0801661.

    Article  PubMed  CAS  Google Scholar 

  • de Weijer, B. A., van de Giessen, E., van Amelsvoort, T. A., Boot, E., Braak, B., Janssen, I. M., et al. (2011). Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects. EJNMMI Research, 1(1), 1–5. https://doi.org/10.1186/2191-219X-1-37.

    Article  CAS  Google Scholar 

  • Westerterp, K. R. (2010). Physical activity, food intake, and body weight regulation: Insights from doubly labeled water studies. Nutrition Reviews, 68(3), 148–154.

    Article  PubMed  Google Scholar 

  • Wiemerslage, L., Nilsson, E. K., Solstrand Dahlberg, L., Ence-Eriksson, F., Castillo, S., Larsen, A. L., et al. (2016). An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images. European Journal of Neuroscience, 43(9), 1173–1180. https://doi.org/10.1111/ejn.13177.

    Article  PubMed  Google Scholar 

  • Wilcox, C. E., Braskie, M. N., Kluth, J. T., & Jagust, W. J. (2010). Overeating behavior and Striatal dopamine with 6-[1 8 F]-Fluoro-L-m-tyrosine PET. Journal of Obesity, 2010.

    Google Scholar 

  • Witt, A., & Lowe, M. R. (2014). Hedonic hunger and binge eating among women with eating disorders. The International Journal of Eating Disorders, 47(3), 273–280. https://doi.org/10.1002/eat.22171.

    Article  PubMed  Google Scholar 

  • World Health Organization. (2010). Set of recommendations on the marketing of foods and non-alcoholic beverages to children.

    Google Scholar 

  • Xia, W., Wang, S., Spaeth, A. M., Rao, H., Wang, P., Yang, Y., et al. (2015). Insulin resistance-associated Interhemispheric functional connectivity alterations in T2DM: A resting-state fMRI study. BioMed Research International, 2015, 719076. https://doi.org/10.1155/2015/719076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokum, S., Ng, J., & Stice, E. (2011). Attentional Bias to food images associated with elevated weight and future weight gain: An fMRI study. Obesity, 19(9), 1775–1783. https://doi.org/10.1038/oby.2011.168.

    Article  PubMed  Google Scholar 

  • Yokum, S., Ng, J., & Stice, E. (2012). Relation of regional gray and white matter volumes to current BMI and future increases in BMI: A prospective MRI study. International Journal of Obesity (2005), 36(5), 656–664. https://doi.org/10.1038/ijo.2011.175.

    Article  CAS  Google Scholar 

  • Young, L. R., & Nestle, M. (2002). The contribution of expanding portion sizes to the US obesity epidemic. American Journal of Public Health, 92(2), 246–249.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, C., & McClellan, J. (2016). Genetics of substance use disorders. Child and Adolescent Psychiatric Clinics of North America, 25(3), 377–385. https://doi.org/10.1016/j.chc.2016.02.002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle S. Burger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burger, K.S., Shearrer, G.E., Gilbert, J.R. (2018). Brain, Environment, Hormone-Based Appetite, Ingestive Behavior, and Body Weight. In: Nillni, E. (eds) Textbook of Energy Balance, Neuropeptide Hormones, and Neuroendocrine Function. Springer, Cham. https://doi.org/10.1007/978-3-319-89506-2_13

Download citation

Publish with us

Policies and ethics