Advertisement

Pollution Attacks Identification in Structured P2P Overlay Networks

  • Zied Trifa
  • Jalel Eddine Hajlaoui
  • Maher Khemakhem
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10631)

Abstract

Structured p2p overlay networks have emerged as a dominant means for sharing and exchange of information on the Internet. However, they suffer from severe security threats, known as pollution attacks, in which malicious peers insert decoys in data object. The existence of such polluters is considered as a major problem since these systems are based on trust between peers to ensure the sharing and access to available resources. Pollution attacks ravages network resources and annoys peers with contaminated objects. Although there have been numerous works on pollution attacks, there have been no studies on these attacks in structured p2p overlay networks and all of them are not qualified to ensure security. This paper investigates the different strategies of polluter nodes and their impact on the security of communication. We also detail a monitoring process to supervise, detect and attenuate these threats. Our experiments show that our strategy decreases enormously the pollution attacks with a slight number of monitor peers.

Keywords

Pollution attacks Structured p2p overlay networks Chord Monitoring Tracking 

References

  1. 1.
    Maurya, R.K., Pandey, S., Kumar, V.: A survey of peer-to-peer networks. J. Adv. Res. Comput. Commun. Eng. (2016)Google Scholar
  2. 2.
    Liang, J., Kumar, R., Xi, Y., Ross, K.W.: Pollution in p2p file sharing systems. In: Proceeding of the International IEEE Conference INFOCOM, Miami, FL, March 2005Google Scholar
  3. 3.
    Chawla, S.: Content pollution in P2P system. J. Inf. Comput. Technol. 3(8), 841–844 (2013)Google Scholar
  4. 4.
    Chen, C.S., et al.: Application of fault-tolerant mechanism to reduce pollution attacks in peer-to-peer networks. J. Distrib. Sensor Netw. 10(7), 792407 (2014)CrossRefGoogle Scholar
  5. 5.
    Locher, T., Mysicka, D., Schmid, S., Wattenhofer, R.: Poisoning the Kad network. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds.) ICDCN 2010. LNCS, vol. 5935, pp. 195–206. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11322-2_22CrossRefGoogle Scholar
  6. 6.
    Liang, J., Naoumov, N., Ross, K.W.: The index poisoning attack in p2p file sharing systems. In: Proceeding of the International IEEE Conference INFOCOM, April 2006Google Scholar
  7. 7.
    Shi, J., Liang, J., You, J.: Measurements and understanding of the KaZaA P2P network. J. Current Trends High Perform. Comput. Appl. (2005)Google Scholar
  8. 8.
    Liang, J., Naoumov, N., Ross, K.W.: Efficient blacklisting and pollution-level estimation in P2P file-sharing systems. In: Cho, K., Jacquet, P. (eds.) AINTEC 2005. LNCS, vol. 3837, pp. 1–21. Springer, Heidelberg (2005).  https://doi.org/10.1007/11599593_1CrossRefGoogle Scholar
  9. 9.
    Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation management in p2p networks. In: Proceeding of the International Conference on WWW, Budapest, Hungary, pp. 640–651 (2003)Google Scholar
  10. 10.
    Costa, C., Soares, V., Almeida, J., Almeida, V.: Fighting pollution dissemination in peer-to-peer networks. In: Proceeding of the International Conference ACM SAC, Seoul, Korea, pp. 1586–1590 (2007)Google Scholar
  11. 11.
    Vieiera, A.B., et al.: SimplyRep: a simple and effective reputation system to fight pollution in P2P live streaming. J. Comput. Netw. 57(4), 1019–1036 (2013)CrossRefGoogle Scholar
  12. 12.
    Meng, X.-F., Tan, J.: Field theory based anti-pollution strategy in P2P networks. In: Yu, Y., Yu, Z., Zhao, J. (eds.) CSEEE 2011. CCIS, vol. 159, pp. 107–111. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22691-5_19CrossRefGoogle Scholar
  13. 13.
    Walsh, K., Sirer, E.G.: Fighting peer-to-peer SPAM and decoys with object reputation. In: Proceedings of the International Conference on P2PECON, Philadelphia, August 2005Google Scholar
  14. 14.
    Feng, Q., Dai, Y.: Lip a lifetime and popularity based ranking approach to filter out fake files in p2p file sharing systems. In: Proceedings of the International Conference on IPTPS, February 2007Google Scholar
  15. 15.
    Zhang, P., Fotiou, N., Helvik, B.E., Marias, G.F., Ployzos, G.C.: Analysis of the effect of InfoRanking on content pollution in P2P systems. J. Secur. Commun. Netw. 7(4), 700–713 (2014)CrossRefGoogle Scholar
  16. 16.
    Shin, K., Reeves, D.S.: Winnowing: protecting P2P systems against pollution through cooperative index filtering. J. Netw. Comput. Appl. 31(1), 72–84 (2012)CrossRefGoogle Scholar
  17. 17.
    Qi, M., Guo, Y., Yan, H.: A reputation system with anti-pollution mechanism in P2P file sharing systems. J. Distrib. Sensor Netw. 5, 44–48 (2009)CrossRefGoogle Scholar
  18. 18.
    Montassier, G., Cholez, T., Doyen, G., Khatoun, R., Chrisment, I., et al.: Content pollution quantification in large P2P networks: a measurement study on KAD. In: Proceedings of 11th IEEE International Conference on Peer-to-Peer Computing, Japan, August 2011Google Scholar
  19. 19.
    Wang, Q., Vu, L., Nahrstedt, K., Khurana, H.: Identifying malicious nodes in network-coding-based peer-to-peer streaming networks. In: Proceedings of the International Conference on IEEE INFOCOM (2010)Google Scholar
  20. 20.
    Gaeta, R., Grangetto, M.: Identification of malicious nodes in peer-to-peer streaming: a belief propagation based technique. J. IEEE Trans. Parallel Distrib. Syst. 24(10), 1994–2003 (2013)CrossRefGoogle Scholar
  21. 21.
    Gaeta, R., Grangetto, M., Bovio, L.: DIP: Distributed Identification of Polluters in P2P live streaming. J. ACM Trans. Multimedia Comput. 10(3), 24 (2014)Google Scholar
  22. 22.
    Graffi, K.: PeerfactSim.KOM – a peer-to-peer system simulator: experiences and lessons learned. In: Proceedings of IEEE International Conference on Peer-to-Peer Computing (2011)Google Scholar
  23. 23.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup service for Internet applications. In: Proccedings of ACM SIGCOMM, San Diego, California (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zied Trifa
    • 1
  • Jalel Eddine Hajlaoui
    • 2
  • Maher Khemakhem
    • 3
  1. 1.MIRACL LaboratoryUniversity of SfaxSfaxTunisia
  2. 2.MARS Research LaboratoryUniversity of SousseSousseTunisia
  3. 3.College of Computing and Information TechnologyUniversity of King AbdulazizJeddahSaudi Arabia

Personalised recommendations