Methods for Increasing the Resistance of Cryptographic Designs Against Horizontal DPA Attacks

  • Ievgen Kabin
  • Zoya Dyka
  • Dan Kreiser
  • Peter Langendoerfer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10631)

Abstract

Side channel analysis attacks, especially horizontal DPA and DEMA attacks, are significant threats for cryptographic designs. In this paper we investigate to which extend different multiplication formulae and randomization of the field multiplier increase the resistance of an ECC design against horizontal attacks. We implemented a randomized sequence of the calculation of partial products for the field multiplication in order to increase the security features of the field multiplier. Additionally, we use the partial polynomial multiplier itself as a kind of countermeasure against DPA attacks. We demonstrate that the implemented classical multiplication formula can increase the inherent resistance of the whole ECC design. We also investigate the impact of the combination of these two approaches. For the evaluation we synthesized all these designs for a 250 nm gate library technologies, and analysed the simulated power traces. All investigated protection means help to decrease the success rate of attacks significantly: the correctness of the revealed key was decreased from 99% to 69%.

Keywords

Elliptic curve cryptography (ECC) Elliptic curve (EC) point multiplication Field multiplication Side channel analysis (SCA) Differential power analysis (DPA) attacks Horizontal attacks 

Notes

Acknowledgments

The work presented here was partly supported by the German Ministry of Research and Education (BMBF) within the ParSec project, grant agreement no. 16KIS0219K.

References

  1. 1.
    Federal Information Processing Standard (FIPS) 186-4, Digital Signature Standard; Request for Comments on the NIST-Recommended Elliptic Curves (2015)Google Scholar
  2. 2.
    Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). IJIS 1, 36–63 (2001)CrossRefGoogle Scholar
  3. 3.
    Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal correlation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17650-0_5CrossRefGoogle Scholar
  4. 4.
    Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48059-5_25CrossRefGoogle Scholar
  5. 5.
    Kabin, I., Dyka, Z., Kreiser, D., Langendoerfer, P.: Evaluation of resistance of ECC designs protected by different randomization countermeasures against horizontal DPA attacks. In: Proceedings of IEEE East-West Design Test Symposium (EWDTS2017) (2017)Google Scholar
  6. 6.
    Kabin, I., Dyka, Z., Kreiser, D., Langendoerfer, P.: Attack against montgomery kP implementation: horizontal address-bit DPA? In: Proceedings of the WiP Session of Euromicro Conference on Digital System Design (DSD2017) (2017)Google Scholar
  7. 7.
    Dyka, Z., Bock, E.A., Kabin, I., Langendoerfer, P.: Inherent resistance of efficient ECC designs against SCA attacks. In: 2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5 (2016)Google Scholar
  8. 8.
    Kabin, I., Dyka, Z., Kreiser, D., Langendoerfer, P.: On the influence of hardware technologies on the vulnerability of protected ECC implementations. In: Proceedings of the WiP Session of Euromicro Conference on Digital System Design (DSD2016) (2016)Google Scholar
  9. 9.
    Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Comp. 48, 243–264 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without precomputation. In: Koç, Çetin K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48059-5_27CrossRefGoogle Scholar
  11. 11.
    Hankerson, D., López Hernandez, J., Menezes, A.: Software implementation of elliptic curve cryptography over binary fields. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44499-8_1CrossRefGoogle Scholar
  12. 12.
    Dyka, Z., Langendoerfer, P.: Area efficient hardware implementation of elliptic curve cryptography by iteratively applying Karatsuba’s method. In: Design, Automation and Test in Europe, vol. 3, pp. 70–75 (2005)Google Scholar
  13. 13.
    Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal collision correlation attack on elliptic curves. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 553–570. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43414-7_28CrossRefGoogle Scholar
  14. 14.
    Dyka, Z.: Analysis and prediction of area- and energy-consumption of optimized polynomial multipliers in hardware for arbitrary GF(2n) for elliptic curve cryptography. Dissertation thesis, BTU Cottbus-Senftenberg (2013). https://opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/2634
  15. 15.
    Madlener, F., Sötttinger, M., Huss, S.A.: Novel hardening techniques against differential power analysis for multiplication in GF(2n). In: 2009 International Conference on Field-Programmable Technology, pp. 328–334. IEEE (2009)Google Scholar
  16. 16.
    Stöttinger, M., Madlener, F., Huss, S.A.: Procedures for securing ECC implementations against differential power analysis using reconfigurable architectures. In: Platzner, M., Teich, J., Wehn, N. (eds.) Dynamically Reconfigurable Systems, pp. 395–415. Springer, Dordrecht (2010).  https://doi.org/10.1007/978-90-481-3485-4_19CrossRefGoogle Scholar
  17. 17.
    Dyka, Z., Wittke, C., Langendoerfer, P.: Clockwise randomization of the observable behaviour of crypto ASICs to counter side channel attacks. In: 2015 Euromicro Conference on Digital System Design, pp. 551–554 (2015)Google Scholar
  18. 18.
    Synopsis. PrimeTime. http://www.synopsys.com/Tools/

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IHPFrankfurt (Oder)Germany

Personalised recommendations