Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 84))

  • 586 Accesses

Abstract

Pinus oocarpa var. oocarpa Schiede (Pinophyta, Pinales, Pinaceae subgenus Pinus) is an economically-important conifer of Mexico and Central America. Clonal propagation methods are required to capture the genetic gains obtained through traditional breeding, for the rapid production of elite stock, as well for the introduction of desirable genes via genetic engineering technologies. However, little attention has been paid to the development of tissue culture protocols for P. oocarpa. Here, we outline the clonal propagation process via somatic embryogenesis for this species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberto DM, Elvir JA (2008) Acumulación y fijación de carbono en biomasa aérea de Pinus oocarpa en bosques naturales en Honduras. Investigación Agraria: Sistemas y Recursos Forestales 17(1):67–78

    Google Scholar 

  • Alvarez JM, Ordás RJ (2013) Stable Agrobacterium-mediated transformation of maritime pine based on kanamycin selection. The Sci World J 2013; Article ID 681792

    Google Scholar 

  • Aronen T, Pehkonen T, Ryynänen L (2009) Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand J For Res 24(5):372–383

    Article  Google Scholar 

  • Attree S, Fowke L (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell, Tissue and Organ Cult 35(1):1–35

    Article  CAS  Google Scholar 

  • Carneros E, Celestino C, Klimaszewska K, Park YS, Toribio M, Bonga JM (2009) Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell, Tissue and Organ Cult 98(2):165–178

    Article  CAS  Google Scholar 

  • Colas F, Lamhamedi MS (2014) Production of a new generation of seeds through the use of somatic clones in controlled crosses of black spruce (Picea mariana). New For 45(1):1–20

    Article  Google Scholar 

  • Dvorak WS, Gutierrez EA, Osorio LF, Hodge GR, Brawner JT (2000) Pinus oocarpa. In: Dvorak WS, Hodge GR, Romero JL, Woodbridge WC (eds) Conservation and testing of tropical and subtropical forest tree species by the CAMCORE cooperative. College of Natural Resources, NCSU, Raleigh, NC, USA, pp 128–147

    Google Scholar 

  • Dvorak WS, Potter K, Hipkins V, Hodge G (2009) Genetic diversity and gene exchange in Pinus oocarpa, a Mesoamerican pine with resistance to the pitch canker fungus (Fusarium circinatum). Int J Plant Sci 170(5):609–626

    Article  Google Scholar 

  • Franco EO, Schwarz OJ (1985) Micropropagation of two tropical conifers: Pinus oocarpa Schiede and Cupressus lusitanica Miller. Plenum Press 195–213

    Chapter  Google Scholar 

  • Giri CC, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees-Struct Funct 18(2):115–135

    Article  Google Scholar 

  • Greaves A (1982) Pinus oocarpa. For Abstr 43(9):503–532

    Google Scholar 

  • Grossnickle SC, Major JE (1994) Interior spruce seedlings compared with emblings produced from somatic embryogenesis. III. Physiological response and morphological development on a reforestation site. Can J For Res 24(7):1397–1407

    Article  Google Scholar 

  • Gupta PK, Holmstrom D (2005) Double staining technology for distinguishing embryogenic cultures. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants, vol 77. Springer, Berlin, pp 573–575

    Google Scholar 

  • Häggman H, Vuosku J, Sarjala T, Jokela A, Niemi K (2006) Somatic embryogenesis of pine species: from functional genomics to plantation forestry. In: Mujib A, Samaj J (eds) Somatic embryogenesis, vol 2. Springer, Berlin, pp 119–140

    Google Scholar 

  • Hall SE, Dvorak WS, Johnston JS, Price HJ, Williams CG (2000) Flow cytometric analysis of DNA content for tropical and temperate new world pines. Annals Bot 86(6):1081–1086

    Article  CAS  Google Scholar 

  • Klimaszewska K, Smith DR (1997) Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol Plant 100(4):949–957

    Article  CAS  Google Scholar 

  • Laine E, David H, David A (1988) Callus formation from cotyledon protoplasts of Pinus oocarpa and Pinus patula. Physiol Plant 72(2):374–378

    Article  CAS  Google Scholar 

  • Lara-Chavez A, Flinn BS, Egertsdotter U (2011) Initiation of somatic embryogenesis from immature zygotic embryos of Oocarpa Pine (Pinus oocarpa Schiede ex Schlectendal). Tree Physiol 31:539–554

    Article  PubMed  Google Scholar 

  • Lara-Chavez A, Flinn BS, Egertsdotter U (2012) Comparison of gene expression markers during zygotic and somatic embryogenesis in pine. Vitro Cell Dev Biol-Plant 48(3):341–354

    Article  CAS  Google Scholar 

  • Le-Feuvre R, Triviño C, Sabja AM, Bernier-Cardou M, Moynihan MR, Klimaszewska K (2013) Organic nitrogen composition of the tissue culture medium influences Agrobacterium tumefaciens growth and the recovery of transformed Pinus radiata embryonal masses after cocultivation. Vitro Cell Dev Biol-Plant 49(1):30–40

    Article  CAS  Google Scholar 

  • Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15(3):R59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Sugano SS, Osakabe K (2016) Genome engineering of woody plants: past, present and future. J Wood Sci 62(3):217–225

    Article  Google Scholar 

  • Park YS, Lelu-Walter MA, Harvengt L, Trontin JF, MacEacheron I, Klimaszewska K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell, Tissue and Organ Cult 86(1):87–101

    Article  Google Scholar 

  • Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin in Plant Biol 36:1–8

    Article  CAS  Google Scholar 

  • Pullman GS, Zhang Y, Phan BH (2003) Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Cell Rep 22(2):96–104

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Chopra R, Chase K-M (2006) Loblolly pine (Pinus taeda L.) somatic embryogenesis: Improvements in embryogenic tissue initiation by supplementation of medium with organic acids. Vitamins B12 and E Plant Sci 170(3):648–658

    Article  CAS  Google Scholar 

  • Roberts DR, Sutton BCS, Flinn BS (1990) Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can J Bot 68(5):1086–1090

    Article  Google Scholar 

  • Schwarz O, Beaty R, Franco E (1991) Egg-cone pine (Pinus oocarpa Schiede). Biotechnol Agric For 16:305–316

    Google Scholar 

  • Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, Paul R, Gonzalez-Ibeas D, Koriabine M, Holtz-Morris AE, Martínez-García PJ (2016) Sequence of the sugar pine megagenome. Genetics 204(4):1613–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W (2003) Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant Cell Rep 21(6):555–562

    PubMed  CAS  Google Scholar 

  • Tang W, Sederoff R, Whetten R (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213(6):981–989

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Xiao B, Fei Y (2014) Slash pine genetic transformation through embryo cocultivation with A. tumefaciens and transgenic plant regeneration. Vitro Cell Dev Biol-Plant 50(2):199–209

    Article  CAS  Google Scholar 

  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018

    Article  CAS  PubMed  Google Scholar 

  • Tsai C-J, Xue L-J (2015) CRISPRing into the woods. GM Crops and Food 6:206–215

    Article  PubMed  Google Scholar 

  • Wakamiya I, Newton RJ, Johnston JS, Price HJ (1993) Genome size and environmental factors in the genus Pinus. Am J Bot 80(11):1235–1241

    Article  Google Scholar 

  • Wenck AR, Quinn M, Whetten RW, Pullman G, Sederoff R (1999) High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39(3):407–416

    Article  CAS  PubMed  Google Scholar 

  • Zamora S (1981) Algunos aspectos sobre Pinus oocarpa en el estado de chiapas. Cien For 6(32):3–5

    Google Scholar 

  • Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, Neale DB (2014) Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196(3):875–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry S. Flinn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lara-Chavez, A., Egertsdotter, U., Flinn, B.S. (2018). Oocarpa Pine (Pinus Oocarpa var. Oocarpa Schiede). In: Jain, S., Gupta, P. (eds) Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Forestry Sciences, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-89483-6_22

Download citation

Publish with us

Policies and ethics