Skip to main content

Complexity and Approximation of the Longest Vector Sum Problem

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10787))

Included in the following conference series:

  • 640 Accesses

Abstract

Given a set of n vectors in a d-dimensional normed space, consider the problem of finding a subset with the largest length of the sum vector. We prove that, for any \(\ell _p\) norm, \(p\in [1,\infty )\), the problem is hard to approximate within a factor better than \(\min \{\alpha ^{1/p},\sqrt{\alpha }\}\), where \(\alpha =16{\text{/ }}17\). In the general case, we show that the cardinality-constrained version of the problem is hard for approximation factors better than \(1-1/e\) and is W[2]-hard with respect to the cardinality of the solution. For both original and cardinality-constrained problems, we propose a randomized \((1-\varepsilon )\)-approximation algorithm that runs in polynomial time when the dimension of space is \(O(\log n)\). The algorithm has a linear time complexity for any fixed d and \(\varepsilon \in (0,1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to [17], this time bound is as pointed above and not \(O(n^{d(p-1)-1})\) as is asserted in [16].

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Boston (1974)

    MATH  Google Scholar 

  2. Barthe, F., Guédon, O., Mendelson, S., Naor, A.: A probabilistic approach to the geometry of the \(l_p^n\)-ball. Ann. Probab. 33(2), 480–513 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baburin, A.E., Gimadi, E.K., Glebov, N.I., Pyatkin, A.V.: The problem of finding a subset of vectors with the maximum total weight. J. Appl. Ind. Math. 2(1), 32–38 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baburin, A.E., Pyatkin, A.V.: Polynomial algorithms for solving the vector sum problem. J. Appl. Ind. Math. 1(3), 268–272 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonnet, É., Paschos, V.T., Sikora, F.: Parameterized exact and approximation algorithms for maximum \(k\)-set cover and related satisfiability problems. RAIRO-Theor. Inform. Appl. 50(4), 227–240 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, L.: Parameterized complexity of cardinality constrained optimization problems. Comput. J. 51(1), 102–121 (2008)

    Article  Google Scholar 

  7. Dolgushev, A.V., Kel’manov, A.V., Shenmaier, V.V.: Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters. Proc. Steklov Inst. Math. 295(Suppl 1), 47–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gimadi, E.K., Kel’manov, A.V., Kel’manova, M.A., Khamidullin, S.A.: A posteriori detecting a quasiperiodic fragment in a numerical sequence. Pattern Recogn. Image Anal. 18(1), 30–42 (2008)

    Article  MATH  Google Scholar 

  10. Gimadi, E., Rykov, I.: Efficient randomized algorithm for a vector subset problem. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 148–158. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44914-2_12

    Chapter  Google Scholar 

  11. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holmerin, J., Khot, S.: A new PCP outer verifier with applications to homogeneous linear equations and max-bisection. In: 36th Annual ACM Symposium on Theory of Computing, pp. 11–20. ACM, New York (2004)

    Google Scholar 

  13. Hwang, F.K., Onn, S., Rothblum, U.G.: A polynomial time algorithm for shaped partition problems. SIAM J. Optim. 10(1), 70–81 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lovász, L., Simonovits, M.: Random walks in a convex body and an improved volume algorithm. Random Struct. Algorithms 4(4), 359–412 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Onn, S., Schulman, L.J.: The vector partition problem for convex objective functions. Math. Oper. Res. 26(3), 583–590 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Onn, S.: Personal communication, November 2016

    Google Scholar 

  18. Paouris, G., Valettas, P., Zinn, J.: Random version of Dvoretzky’s theorem in \(\ell _p^n\). Stochast. Process. Appl. 127(10), 3187–3227 (2017)

    Article  MATH  Google Scholar 

  19. Pyatkin, A.V.: On the complexity of the maximum sum length vectors subset choice problem. J. Appl. Ind. Math. 4(4), 549–552 (2010)

    Article  MathSciNet  Google Scholar 

  20. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  21. Shenmaier, V.V.: Solving some vector subset problems by Voronoi diagrams. J. Appl. Ind. Math. 10(4), 560–566 (2016). https://doi.org/10.1134/S199047891604013X

    Article  MathSciNet  MATH  Google Scholar 

  22. Shenmaier, V.: Complexity and algorithms for finding a subset of vectors with the longest sum. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 469–480. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4_39

    Google Scholar 

  23. Shenmaier, V.V.: An exact algorithm for finding a vector subset with the longest sum. J. Appl. Ind. Math. 11(4), 584–593 (2017). https://doi.org/10.1134/S1990478917040160

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the Russian Science Foundation under grant 16-11-10041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Shenmaier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shenmaier, V. (2018). Complexity and Approximation of the Longest Vector Sum Problem. In: Solis-Oba, R., Fleischer, R. (eds) Approximation and Online Algorithms. WAOA 2017. Lecture Notes in Computer Science(), vol 10787. Springer, Cham. https://doi.org/10.1007/978-3-319-89441-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89441-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89440-9

  • Online ISBN: 978-3-319-89441-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics