Skip to main content

On Conceptually Simple Algorithms for Variants of Online Bipartite Matching

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10787))

Abstract

We present a series of results regarding conceptually simple algorithms for bipartite matching in various online and related models. We first consider a deterministic adversarial model. The best approximation ratio possible for a single-pass deterministic online algorithm is 1/2, which is achieved by any greedy algorithm. Dürr et al. [15] recently presented a 2-pass algorithm called Category-Advice that achieves approximation ratio 3/5. We extend their algorithm to multiple passes. We prove the exact approximation ratio for the k-pass Category-Advice algorithm for all \(k \ge 1\), and show that the approximation ratio converges to the inverse of the golden ratio \(2/(1+\sqrt{5}) \approx 0.618\) as k goes to infinity. The convergence is extremely fast—the 5-pass Category-Advice algorithm is already within \(0.01\%\) of the inverse of the golden ratio. We then consider two natural greedy algorithms—MinDegree and MinRanking. We analyze MinDegree in the online IID model and show that its approximation ratio is exactly \(1-1/e\). We analyze MinRanking in the priority model and show that this natural algorithm cannot obtain the approximation of the Ranking algorithm in the ROM model.

A. Borodin and D. Pankratov—Research is supported by NSERC.

A. Salehi-Abari—Research was done while the author was a postdoctoral fellow at the University of Toronto. Research was also supported by NSERC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The full version of the paper can be found on arXiv [9].

  2. 2.

    In fact, it is easy to see that there is an optimal tie-breaking rule that can be computed by dynamic programming. Unfortunately, the size of the dynamic programming table is exponentially large, and moreover, currently it is not known how to analyze such optimal tie-breaking rules.

  3. 3.

    The Goel and Mehta [19] result is even stronger as it holds for the ROM model.

  4. 4.

    A notable feature of this multi-pass algorithm is that after pass i, the algorithm can deterministically commit to matching a subset of size \(\frac{F_{2i}}{F_{2i+1}}|M|\) where M is a maximum matching. This follows from a certain monotonicity property. See the full version of the paper for details [9].

  5. 5.

    The last property allows us to conclude that the approximation ratio of k-pass Category-Advice converges to the inverse of the golden ratio even when k is allowed to depend on n arbitrarily.

References

  1. Angelopoulos, S., Borodin, A.: On the power of priority algorithms for facility location and set cover. In: Jansen, K., Leonardi, S., Vazirani, V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 26–39. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45753-4_5

    Chapter  Google Scholar 

  2. Aronson, J., Dyer, M., Frieze, A., Suen, S.: Randomized greedy matching. II. Random Struct. Algorithms 6(1), 55–73 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bahmani, B., Kapralov, M.: Improved bounds for online stochastic matching. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 170–181. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-2_15

    Chapter  Google Scholar 

  4. Besser, B., Poloczek, M.: Erratum to: greedy matching: guarantees and limitations. Algorithmica 80, 1–4 (2017)

    MATH  Google Scholar 

  5. Besser, B., Poloczek, M.: Greedy matching: guarantees and limitations. Algorithmica 77(1), 201–234 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borodin, A., Boyar, J., Larsen, K.S.: Priority algorithms for graph optimization problems. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 126–139. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31833-0_12

    Chapter  Google Scholar 

  7. Borodin, A., Ivan, I., Ye, Y., Zimny, B.: On sum coloring and sum multi-coloring for restricted families of graphs. Theor. Comput. Sci. 418, 1–13 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borodin, A., Nielsen, M.N., Rackoff, C.: (Incremental) priority algorithms. Algorithmica 37(4), 295–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borodin, A., Pankratov, D., Salehi-Abari, A.: On conceptually simple algorithms for variants of online bipartite matching. CoRR, abs/1706.09966 (2017)

    Google Scholar 

  10. Brubach, B., Sankararaman, K.A., Srinivasan, A., Xu, P.: New algorithms, better bounds, and a novel model for online stochastic matching. In: Proceedings of ESA, pp. 24:1–24:16 (2016)

    Google Scholar 

  11. Chandra, B., Halldórsson, M.M.: Greedy local improvement and weighted set packing approximation. J. Algorithms 39(2), 223–240 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davis, S., Impagliazzo, R.: Models of greedy algorithms for graph problems. Algorithmica 54(3), 269–317 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  14. Duan, R., Pettie, S.: Linear-time approximation for maximum weight matching. J. ACM 61(1), 1:1–1:23 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dürr, C., Konrad, C., Renault, M.: On the power of advice and randomization for online bipartite matching. In: Proceedings of ESA, pp. 37:1–37:16 (2016)

    Google Scholar 

  16. Eggert, S., Kliemann, L., Munstermann, P., Srivastav, A.: Bipartite matching in the semi-streaming model. Algorithmica 63(1–2), 490–508 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic matching: beating 1-1/e. In: Proceedings of FOCS, pp. 117–126 (2009)

    Google Scholar 

  18. Goel, A., Kapralov, M., Khanna, S.: On the communication and streaming complexity of maximum bipartite matching. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19 January 2012, pp. 468–485 (2012)

    Google Scholar 

  19. Goel, G., Mehta, A.: Online budgeted matching in random input models with applications to adwords. In: Proceeding of SODA, pp. 982–991 (2008)

    Google Scholar 

  20. Haeupler, B., Mirrokni, V.S., Zadimoghaddam, M.: Online stochastic weighted matching: improved approximation algorithms. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) WINE 2011. LNCS, vol. 7090, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25510-6_15

    Chapter  Google Scholar 

  21. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jaillet, P., Lu, X.: Online stochastic matching: new algorithms with better bounds. Math. Oper. Res. 39(3), 624–646 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kapralov, M.: Better bounds for matchings in the streaming model. In: Proceedings of SODA, pp. 1679–1697 (2013)

    Google Scholar 

  24. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bipartite matching. In: Proceedings of STOC, pp. 352–358 (1990)

    Google Scholar 

  25. Lucier, B., Syrgkanis, V.: Greedy algorithms make efficient mechanisms. In: Proceedings of Conference on Economics and Computation, EC, pp. 221–238 (2015)

    Google Scholar 

  26. Madry, A.: Navigating central path with electrical flows: from flows to matchings, and back. In: Proceedings of FOCS, pp. 253–262 (2013)

    Google Scholar 

  27. Madry, A.: Computing maximum flow with augmenting electrical flows. In: Proceedings of FOCS, pp. 593–602 (2016)

    Google Scholar 

  28. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an approach based on strongly factor-revealing LPs. In: Proceedings of STOC, pp. 597–606 (2011)

    Google Scholar 

  29. Manshadi, V.H., Gharan, S.O., Saberi, A.: Online stochastic matching: online actions based on offline statistics. In: Proceedings of SODA, pp. 1285–1294 (2011)

    Google Scholar 

  30. McGregor, A.: Graph sketching and streaming: new approaches for analyzing massive graphs. In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 20–24. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58747-9_4

    Chapter  Google Scholar 

  31. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: Proceedings of FOCS, pp. 248–255 (2004)

    Google Scholar 

  32. Pena, N., Borodin, A.: On the limitations of deterministic de-randomizations for online bipartite matching and max-sat. CoRR, abs/1608.03182 (2016)

    Google Scholar 

  33. Poloczek, M.: Bounds on greedy algorithms for MAX SAT. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23719-5_4

    Chapter  Google Scholar 

  34. Poloczek, M., Schnitger, G., Williamson, D.P., Van Zuylen, A.: Greedy algorithms for the maximum satisfiability problem: simple algorithms and inapproximability bounds. SICOMP, accepted for publication

    Google Scholar 

  35. Poloczek, M., Williamson, D.P.: An experimental evaluation of fast approximation algorithms for the maximum satisfiability problem. In: Proceedings of International Symposium on Experimental Algorithms, SEA, pp. 246–261 (2016)

    Google Scholar 

  36. Tinhofer, G.: A probabilistic analysis of some greedy cardinality matching algorithms. Ann. Oper. Res. 1(3), 239–254 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ye, Y., Borodin, A.: Priority algorithms for the subset-sum problem. J. Comb. Optim. 16(3), 198–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Pankratov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borodin, A., Pankratov, D., Salehi-Abari, A. (2018). On Conceptually Simple Algorithms for Variants of Online Bipartite Matching. In: Solis-Oba, R., Fleischer, R. (eds) Approximation and Online Algorithms. WAOA 2017. Lecture Notes in Computer Science(), vol 10787. Springer, Cham. https://doi.org/10.1007/978-3-319-89441-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89441-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89440-9

  • Online ISBN: 978-3-319-89441-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics