Skip to main content

Concept of the Exhumed Partial Annealing (Retention) Zone and Age-Elevation Profiles in Thermochronology

  • Chapter
  • First Online:
Book cover Fission-Track Thermochronology and its Application to Geology

Abstract

Low-temperature thermochronology is commonly applied to constrain upper crustal cooling histories as rocks are exhumed to Earth’s surface via a variety of geological processes. Collecting samples over significant relief (i.e., vertical profiles), and then plotting age versus elevation, is a long-established approach to constrain the timing and rates of exhumation. An exhumed partial annealing zone (PAZ) or partial retention zone (PRZ) with a well-defined break in slope revealed in an age-elevation profile, ideally complemented by kinetic parameters such as confined track lengths, provides robust constraints on the timing of the transition from relative thermal and tectonic stability to rapid cooling and exhumation. The slope above the break, largely a relict of a paleo-PAZ usually with significant age variation with change in elevation, can be used to quantify fault offsets. The slope below the break is steeper and represents an apparent exhumation rate. We discuss attributes and caveats for the interpretation of each part of an age-elevation profile, and provide examples from Denali in the central Alaska Range, the rift-flank Transantarctic Mountains, and the Gold Butte block of southeastern Nevada, where multiple methods reveal exhumed PAZs and PRZs in the footwall of a major detachment fault. Many factors, including exhumation rates, advection of isotherms and topographic effects on near-surface isotherms, may affect the interpretation of data. Sampling steep profiles over short-wavelength topography and parallel to structures minimises misfits between age-elevation slopes and actual exhumation histories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LD, Silver EA, Anderson RS, Smith R, Ingle JC, Kling SA, Haig D, Small E, Galewsky J, Sliter W (1997) Measurement of tectonic surface uplift rate in a young collisional mountain belt. Nature 385:501–508

    Article  Google Scholar 

  • Baldwin SL, Lister GS (1998) Thermochronology of the South Cyclades shear zone, Ios, Greece; effects of ductile shear in the argon partial retention zone. J Geophys Res 103:7315–7336

    Article  Google Scholar 

  • Baldwin SL, Fitzgerald PG, Malusà MG (2018) Chapter 13. Crustal exhumation of plutonic and metamorphic rocks: constraints from fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Barrett PJ (1979) Proposed drilling in McMurdo Sound. Mem Nat Inst Polar Res, Spec Issue 13:231–239

    Google Scholar 

  • Batt GE, Braun J (1997) On the thermomechanical evolution of compressional orogens. Geophys J Int 128:364–382

    Article  Google Scholar 

  • Beard LS (1996) Paleogeography of the Horse Spring Formation in relation to the Lake Mead fault system, Virgin Mountains, Nevada and Arizona. In: Bertatan KK (ed) Reconstructing the history of Basin and Range extension using sedimentology and stratigraphy, vol 303. Geological Society of America Special Paper, pp 27–60

    Chapter  Google Scholar 

  • Benowitz JA, Layer PW, Armstrong PA, Perry SE, Haeussler PJ, Fitzgerald PG, Vanlaningham S (2011) Spatial variations in focused exhumation along a continental-scale strike-slip fault: the Denali fault of the eastern Alaska Range. Geosphere 7:455

    Article  Google Scholar 

  • Benowitz JA, Haeussler PJ, Layer PW, O’Sullivan PB, Wallace WK, Gillis RJ (2012a) Cenozoic tectono-thermal history of the Tordrillo Mountains, Alaska: Paleocene-Eocene ridge subduction, decreasing relief, and late Neogene faulting. Geochem Geophys Geosys 13(4). https://doi.org/10.1029/2011gc003951

    Article  Google Scholar 

  • Benowitz JA, Bemis SP, O’Sullivan PB, Layer PW, Fitzgerald PG, Perry S (2012b) The Mount McKinley Restraining Bend: Denali Fault, Alaska. Geol Soc Am Abstr Programs 44(7):597

    Google Scholar 

  • Benowitz JA, Layer PW, Vanlaningham S (2014) Persistent long-term (c. 24 Ma) exhumation in the Eastern Alaska Range constrained by stacked thermochronology. Geol Soc Lon Spec Publ 378:225–243

    Article  Google Scholar 

  • Bernet M (2009) A field-based estimate of the zircon fission-track closure temperature. Chem Geol 259:181–189

    Article  Google Scholar 

  • Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58:205–238

    Article  Google Scholar 

  • Brady RJ, Wernicke B, Fryxell JE (2000) Kinematic evolution of a large-offset continental normal fault system, South Virgin Mountains, Nevada. Geol Soc Am Bull 112:1375–1397

    Google Scholar 

  • Braun J (2002) Quantifying the effect of recent relief changes on age-elevation relationships. Earth Planet Sci Lett 200:331–343

    Article  Google Scholar 

  • Braun J (2003) Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Comput Geosci 29:787–794

    Article  Google Scholar 

  • Braun J (2005) Quantitative constraints on the rate of landform evolution derived from low-temperature thermochronology. Rev Min Geochem 58:351–374

    Article  Google Scholar 

  • Braun J, van der Beek P, Batt G (2006) Quantitative thermochronology: numerical methods for the interpretation of thermochronological data. Cambridge University Press

    Google Scholar 

  • Brennan P, Gilbert H, Ridgway KD (2011) Crustal structure across the central Alaska Range: Anatomy of a Mesozoic collisional zone. Geochem Geophys Geosyst 12:Q04010. https://doi.org/10.1029/2011GC003519

    Article  Google Scholar 

  • Brown R (1991) Backstacking apatite fission-track “stratigraphy”: a method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology 19:74–77

    Article  Google Scholar 

  • Brown RW, Summerfield MA (1997) Some uncertainties in the derivation of rates of denudation from thermochronologic data. Earth Surf Proc Land 22:239–248

    Article  Google Scholar 

  • Brown RW, Summerfield MA, Gleadow AJW (1994) Apatite fission track analysis: its potential for the estimation of denudation rates and implications for models of long-term landscape development. In: Kirby MJ (ed) Process models and theoretical geomorphology. Wiley, pp 23–53

    Google Scholar 

  • Burkett CA, Bemis SP, Benowitz JA (2016) Along-fault migration of the Mount McKinley restraining bend of the Denali fault defined by late Quaternary fault patterns and seismicity, Denali National Park & Preserve, Alaska. Tectonophysics 693:489–506

    Article  Google Scholar 

  • Burtner RL, Nigrini A, Donelick RA (1994) Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt. AAPG Bull 78:1613–1636

    Google Scholar 

  • Calk LC, Naeser CW (1973) The thermal effect of a basalt intrusion on fission tracks in quartz monzonite. J Geol 81:189–198

    Article  Google Scholar 

  • Ching-Ying L, Typhoon L, Lee CW (1990) The Rb-Sr isotopic record in Taiwan gneisses and its tectonic implications. Tectonophysics 183:129–143

    Article  Google Scholar 

  • Dalziel IWD (1992) Antarctica: a tale of two supercontinents. Annu Rev Earth Planet Sci 20:501–526

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperatures in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Article  Google Scholar 

  • Duebendorfer EM, Sharp WD (1998) Variation in extensional strain along-strike of the South Virgin-White Hills detachment fault: perspective from the northern White Hills, northwestern Arizona. Geol Soc Am Bull 110:1574–1589

    Article  Google Scholar 

  • Dumitru TA (2000) Fission-track geochronology. In: Noller JS, Sowers JM, Lettis WR (eds) Quaternary geochronology: methods and applications. Wiley, Hoboken, pp 131–155

    Chapter  Google Scholar 

  • Dusel-Bacon CE (1994) Metamorphic history of Alaska. In: Plafker G, Berg HC (eds) The geology of North America, v G-1 The Geology of Alaska. Geological Society of America, Boulder, CO, pp 495–533

    Google Scholar 

  • Ehlers TA, Farley KA (2003) Apatite (U-Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet Sci Lett 206:1–14

    Article  Google Scholar 

  • England P, Molnar P (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18:1173–1177

    Article  Google Scholar 

  • Farley KA (2002) (U-Th)/He dating: techniques, calibrations, and applications. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, vol 47. Reviews Min Pet Soc Am, pp 819–844

    Article  Google Scholar 

  • Fitzgerald PG (1992) The Transantarctic Mountains of southern Victoria Land: the application of apatite fission track analysis to a rift shoulder uplift. Tectonics 11:634–662

    Article  Google Scholar 

  • Fitzgerald PG (1994) Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica. Tectonics 13:818–836

    Article  Google Scholar 

  • Fitzgerald PG (2002) Tectonics and landscape evolution of the Antarctic plate since Gondwana breakup, with an emphasis on the West Antarctic rift system and the Transantarctic Mountains. In: Gamble JA, Skinner DNB, Henrys S (eds) Antarctica at the close of a Millennium. Proceedings of the 8th international symposium on Antarctic Earth Science, vol 35. Royal Society of New Zealand Bulletin, pp 453–469

    Google Scholar 

  • Fitzgerald PG, Gleadow AJW (1988) Fission-track geochronology, tectonics and structure of the Transantarctic Mountains in northern Victoria Land, Antarctica. Chem Geol 73:169–198

    Google Scholar 

  • Fitzgerald PG, Gleadow AJW (1990) New approaches in fission track geochronology as a tectonic tool: examples from the Transantarctic Mountains. Nucl Tracks Radiat Meas 17:351–357

    Article  Google Scholar 

  • Fitzgerald PG, Stump E (1997) Cretaceous and Cenozoic episodic denudation of the Transantarctic Mountains, Antarctica: new constraints from apatite fission track thermochronology in the Scott Glacier region. J Geophys Res 102:7747–7765

    Article  Google Scholar 

  • Fitzgerald PG, Fryxell JE, Wernicke BP (1991) Miocene crustal extension and uplift in southeastern Nevada: constraints from apatite fission track analysis. Geology 19:1013–1016

    Article  Google Scholar 

  • Fitzgerald PG, Stump E, Redfield TF (1993) Late Cenozoic uplift of Denali and its relation to relative plate motion and fault morphology. Science 259:497–499

    Article  Google Scholar 

  • Fitzgerald PG, Sorkhabi RB, Redfield TF, Stump E (1995) Uplift and denudation of the central Alaska Range: a case study in the use of apatite fission-track thermochronology to determine absolute uplift parameters. J Geophys Res 100:20175–20191

    Article  Google Scholar 

  • Fitzgerald PG, Baldwin SL, O’Sullivan PB, Webb LE (2006) Interpretation of (U-Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chem Geol 225:91–120

    Article  Google Scholar 

  • Fitzgerald PG, Duebendorfer EM, Faulds JE, O’Sullivan PB (2009) South Virgin–White Hills detachment fault system of SE Nevada and NW Arizona: applying apatite fission track thermochronology to constrain the tectonic evolution of a major continental detachment fault. Tectonics 28. https://doi.org/10.1029/2007tc002194

  • Fitzgerald PG, Roeske SM, Benowitz JA, Riccio SJ, Perry SE, Armstrong PA (2014) Alternating asymmetric topography of the Alaska Range along the strike-slip Denali Fault: strain partitioning and lithospheric control across a terrane suture zone. Tectonics 33. https://doi.org/10.1002/2013tc003432

  • Fleischer RL, Price PB, Walker RM (1965) Effects of temperature, pressure, and ionization of the formation and stability of fission tracks in minerals and glasses. J Geophys Res 70:1497–1502

    Article  Google Scholar 

  • Flowers RM, Ketcham RA, Shuster DL, Farley KA (2009) Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Acta 73:2347–2365

    Article  Google Scholar 

  • Foster DA (2018) Chapter 11. Fission-track thermochronology in structural geology and tectonic studies. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Fryxell JE, Salton GG, Selverstone J, Wernicke B (1992) Gold Butte crustal section, South Virgin Mountains, Nevada. Tectonics 11:1099–1120

    Article  Google Scholar 

  • Gallagher K (2012) Transdimensional inverse thermal history modeling for quantitative thermochronology. J Geophys Res Solid Earth 117

    Google Scholar 

  • Gallagher K, Brown RW, Johnson C (1998) Fission Track Analysis and its application to geological problems. Annu Rev Earth Planet Sci 26:519–572

    Article  Google Scholar 

  • Gallagher K, Stephenson J, Brown RW, Holmes C, Fitzgerald PG (2005) Low temperature thermochronology and modeling strategies for multiple samples 1: vertical profiles. Earth Planet Sci Lett 237:193–208

    Article  Google Scholar 

  • Garver JI, Brandon MT, Roden MMK, Kamp PJJ (1999) Exhumation history of orogenic highlands determined by detrital fission track thermochronology. Geol Soc London Spec Publ 154:283–304

    Article  Google Scholar 

  • Gleadow AJW (1990) Fission track thermochronology—reconstructing the thermal and tectonic evolution of the crust. In: Pacific Rim Congress, Gold Coast, Queensland, 1990. Australasian Institute of Mining Metallurgy, pp 15–21

    Google Scholar 

  • Gleadow AJW, Brown RW (2000) Fission track thermochronology and the long term denudational response to tectonics. In: Summerfield MA (ed) Geomorphology and global tectonics. Wiley, NY, pp 57–75

    Google Scholar 

  • Gleadow AJW, Duddy IR (1981) A natural long term annealing experiment for apatite. Nucl Tracks Radiat Meas 5:169–174

    Article  Google Scholar 

  • Gleadow AJW, Fitzgerald PG (1987) Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet Sci Lett 82:1–14

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR, Lovering JF (1983) Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential. APEA J 23:93–102

    Google Scholar 

  • Gleadow AJW, McKelvey BC, Ferguson KU (1984) Uplift history of the Transantarctic Mountains in the Dry Valleys area, southern Victoria Land, Antarctica, from apatite fission track ages. NZ J Geol Geophys 27:457–464

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR, Green PF, Hegarty KA (1986) Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth Planet Sci Lett 78:245–254

    Article  Google Scholar 

  • Goodge JW (2007) Metamorphism in the Ross orogen and its bearing on Gondwana margin tectonics. Geol Soc Am Spec Pap 419:185–203

    Google Scholar 

  • Green PF, Durrani SA (1977) Annealing studies of tracks in crystals. Nucl Tracks Radiat Meas 1:33–39

    Google Scholar 

  • Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1985) Fission-track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nucl Tracks Radiat Meas 10:323–328

    Article  Google Scholar 

  • Green P, Duddy I, Gleadow A, Tingate P, Laslett G (1986) Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chem Geol Isotope Geosci 59:237–253

    Article  Google Scholar 

  • Green P, Duddy I, Laslett G, Hegarty K, Gleadow A, Lovering J (1989) Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chem Geol Isotope Geosci 79:155–182

    Article  Google Scholar 

  • Haeussler PJ (2008) An overview of the neotectonics of interior Alaska: far-field deformation from the Yakutat microplate collision. In: Freymueller JT, Haeussler PJ, Wesson RL, Ekström G (eds) Active tectonics and seismic potential of Alaska, vol 179. American Geophysical Union Monograph, pp 83–108. https://doi.org/10.1029/179gm05

    Chapter  Google Scholar 

  • Haeussler PJ, O’Sullivan PB, Berger AL, Spotila JA (2008) Neogene exhumation of the Tordrillo Mountains, Alaska, and correlations with Denali (Mount Mckinley). In: Freymueller JT, Haeussler PJ, Wesson RL, Ekström G (eds) Active tectonics and seismic potential of Alaska, vol 179. American Geophysical Union Monograph, pp 269–285. https://doi.org/10.1029/179gm15

    Chapter  Google Scholar 

  • Heimann A, Fleming TH, Elliot DH, Foland KA (1994) A short interval of Jurassic continental flood basalt volcanism in Antarctica as demonstrated by 40Ar/39Ar geochronology. Earth Planet Sci Lett 121:19–41

    Article  Google Scholar 

  • Huntington KW, Ehlers TA, Hodges KV, Whipp DM (2007) Topography, exhumation pathway, age uncertainties, and the interpretation of thermochronometer data. Tectonics 26

    Article  Google Scholar 

  • Hurford AJ (2018) Chapter 1. An historical perspective on fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Jadamec MA, Billen MI, Roeske SM (2013) Three-dimensional numerical models of flat slab subduction and the Denali fault driving deformation in south-central Alaska. Earth Planet Sci Lett 376:29–42

    Article  Google Scholar 

  • Kamp PJJ, Tippett JM (1993) Dynamics of Pacific plate crust in the South Island (New Zealand) zone of oblique continent-continent convergence. J Geophys Res: Solid Earth 98:16105–16118

    Article  Google Scholar 

  • Karlstrom KE, Heizler M, Quigley MC (2010) Structure and 40Ar/39Ar K-feldspar thermal history of the Gold Butte block: reevaluation of the tilted crustal section model. Geol Soc Am Spec Pap 463:331–352

    Google Scholar 

  • Ketcham RA (2005) Forward and inverse modeling of low temperature thermochronometry data. Rev Mineral Geochem 58:275–314

    Article  Google Scholar 

  • Ketcham RA (2018) Chapter 3. Fission-track annealing: from geologic observations to thermal history modeling. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Ketcham R, Carter A, Donelick R, Barbarand J, Hurford A (2007) Improved modeling of fission-track annealing in apatite. Am Mineral 92:799–810

    Article  Google Scholar 

  • Ketcham RA, Gautheron C, Tassan-Got L (2011) Accounting for long alpha-particle stopping distances in (U–Th–Sm)/He geochronology: refinement of the baseline case. Geochim Cosmochim Acta 75:7779–7791

    Article  Google Scholar 

  • Lamb MA, Martin KL, Hickson TA, Umhoefer PJ, Eaton L (2010) Stratigraphy and age of the Lower Horse Spring Formation in the Longwell Ridges area, southern Nevada: implications for tectonic interpretations. Geol Soc Am Spec Pap 463:171–201

    Google Scholar 

  • Lock J, Willett S (2008) Low-temperature thermochronometric ages in fold-and-thrust belts. Tectonophysics 456:147–162

    Article  Google Scholar 

  • Malusà MG, Fitzgerald PG (2018a) Chapter 8. From cooling to exhumation: setting the reference frame for the interpretation of thermochronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Malusà MG, Fitzgerald PG (2018b) Chapter 10. Application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Mancktelow NS, Grasemann B (1997) Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics 270:167–195

    Article  Google Scholar 

  • Meesters AGCA, Dunai TJ (2002) Solving the production-diffusion equation for finite diffusion domains of various shapes (part II): application to cases with a-ejection and non-homogeneous distribution of the source. Chem Geol 186:347–363

    Article  Google Scholar 

  • Metcalf JR, Fitzgerald PG, Baldwin SL, Muñoz JA (2009) Thermochronology in a convergent orogen: constraints on thrust faulting and exhumation from the Maladeta Pluton in the Axial Zone of the Central Pyrenees. Earth Planet Sci Lett 287:488–503

    Google Scholar 

  • Miller SR, Fitzgerald PG, Baldwin SL (2010) Cenozoic range-front faulting and development of the Transantarctic Mountains near Cape Surprise, Antarctica: thermochronologic and geomorphologic constraints. Tectonics 29. https://doi.org/10.1029/2009tc002457

  • Moore MA, England PC (2001) On the inference of denudation rates from cooling ages of minerals. Earth Planet Sci Lett 185:265–284

    Article  Google Scholar 

  • Naeser CW (1976) Fission track dating. USGS Open-File Report, pp 76–190

    Google Scholar 

  • Naeser CW (1979) Thermal history of sedimentary basins: fission track dating of subsurface rocks. In: Scholle PA, Schluger PR (eds) Aspects of diagensis, vol 26, Spec Pub Soc Econ Geol Paleo Min, pp 109–112

    Chapter  Google Scholar 

  • Naeser CW (1981) The fading of fission-tracks in the geologic environment—data from deep drill holes. Nucl Tracks Radiat Meas 5:248–250

    Article  Google Scholar 

  • Naeser C, Faul H (1969) Fission track annealing in apatite and sphene. J Geophys Res 74:705–710

    Article  Google Scholar 

  • Parrish RR (1985) Some cautions which should be exercised when interpreting fission track and other dates with regard to uplift rate calculations. Nucl Tracks Radiat Meas 10:425

    Article  Google Scholar 

  • Perry S (2013) Thermotectonic evolution of the Alaska Range: low-temperature thermochronologic constraints. PhD thesis, Syracuse University, 204 p

    Google Scholar 

  • Plafker G, Naeser CW, Zimmerman RA, Lull JS, Hudson T (1992) Cenozoic uplift history of the Mount McKinley area in the central Alaska Range based on fission track dating. USGS Bull 2041:202–212

    Google Scholar 

  • Reed BL, Nelson SW (1977) Geologic map of the Talkeetna quadrangle, Alaska. USGS Misc. Field Studies Map 870-A

    Google Scholar 

  • Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466

    Article  Google Scholar 

  • Reiners PW, Farley KA (2001) Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth Planet Sci Lett 188:413–420

    Article  Google Scholar 

  • Reiners PW, Brady R, Farley KA, Fryxell JE, Wernicke B, Lux D (2000) Helium and argon thermochronometry of the Gold Butte Block, south Virgin Mountains, Nevada. Earth Planet Sci Lett 178:315–326

    Article  Google Scholar 

  • Reiners PW, Farley KA, Hickes HJ (2002) He diffusion and (U–Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics 349:297–308

    Article  Google Scholar 

  • Reiners PW, Zhou Z, Ehlers TA, Changhai X, Brandon MT, Donelick RA, Nicolescu S (2003) Post-orogenic evolution of the Dabie Shan, eastern China, from (U-Th)/He and fission track thermochronology. Am J Sci 303:489–518

    Article  Google Scholar 

  • Riccio SJ, Fitzgerald PG, Benowitz JA, Roeske SM (2014) The role of thrust faulting in the formation of the eastern Alaska Range: thermochronological constraints from the Susitna Glacier Thrust Fault region of the intracontinental strike-slip Denali Fault system. Tectonics 33. https://doi.org/10.1002/2014tc003646

  • Schildgen T, van der Beek P (2018) Chapter 19. Application of low-temperature thermochronology to the geomorphology of orogenic systems. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Stump E, Fitzgerald PG (1992) Episodic uplift of the Transantarctic Mountains. Geology 20:161–164

    Article  Google Scholar 

  • Stüwe K, Hintermüller M (2000) Topography and isotherms revisited: the influence of laterally migrating drainage divides. Earth Planet Sci Lett 184:287–303

    Article  Google Scholar 

  • Stüwe K, White L, Brown R (1994) The influence of eroding topography on steady-state isotherms: application to fission track analysis. Earth Planet Sci Lett 124:63–74

    Article  Google Scholar 

  • ter Voorde M, de Bruijne CH, Cloetingh SAPL, Andriessen PAM (2004) Thermal consequences of thrust faulting: simultaneous versus successive fault activation and exhumation. Earth Planet Sci Lett 223:395–413

    Article  Google Scholar 

  • Trop JM, Ridgway KD (2007) Mesozoic and Cenozoic tectonic growth of southern Alaska: a sedimentary basin perspective. Geol Soc Am Spec Pap 431:55–94

    Google Scholar 

  • Umhoefer PJ, Beard LS, Martin KL, Blythe N (2010) From detachment to transtensional faulting: a model for the Lake Mead extensional domain based on new ages and correlation of subbasins. Geol Soc Am Spec Pap 463:371–394

    Google Scholar 

  • Valla PG, Herman F, van der Beek PA, Braun J (2010) Inversion of thermochronological age-elevation profiles to extract independent estimates of denudation and relief history—I: theory and conceptual model. Earth Planet Sci Lett 295:511–522

    Article  Google Scholar 

  • van der Beek P, van Melle J, Guillot S, Pêcher A, Reiners PW, Nicolescu S, Latif M (2009) Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nat Geosci 2:364–368

    Article  Google Scholar 

  • Veenstra E, Christensen DH, Abers GA, Ferris A (2006) Crustal thickness variation in south-central Alaska. Geology 34:781–784

    Article  Google Scholar 

  • Wagner GA, Reimer GM (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett 14:263–268

    Article  Google Scholar 

  • Wagner GA, Reimer GM, Jäger E (1977) Cooling ages derived by apatite fission-track, mica Rb-Sr and K-Ar dating: the uplift and cooling history of the Central Alps. Mem Inst Geol Mineral Univ Padova 30:1–27

    Google Scholar 

  • Ward DJ, Anderson RS, Haeussler PJ (2012) Scaling the Teflon Peaks: rock type and the generation of extreme relief in the glaciated western Alaska Range. J Geophys Res 117:1–20. https://doi.org/10.1029/2011JF002068

    Article  Google Scholar 

  • Wildman M, Beucher R, Cogné N (2018) Chapter 20. Fission-track thermochronology applied to the evolution of passive continental margins. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Wernicke B, Axen GJ (1988) On the role of isostasy in the evolution of normal fault systems. Geology 16:848–861

    Article  Google Scholar 

  • Wolf RA, Farley KA, Kass DM (1998) Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chem Geol 148:105–114

    Article  Google Scholar 

  • Wong M, Roesler D, Gans PB, Zeitler PK, Idleman BD (2014) Field calibration studies of continuous thermal histories derived from multiple diffusion domain (MDD) modeling of 40Ar/39Ar K-feldspar analyses at the Grayback and Gold Butte Normal Fault Blocks, US Basin and Range. Am Geophys Union, Fall Meeting, abstract #EP21A-3521

    Google Scholar 

Download references

Acknowledgements

PGF acknowledges research support from the Antarctic Research Centre of Victoria University of Wellington, the University of Melbourne, Syracuse University, and the National Science Foundation (Alaska, Antarctica and Gold Butte projects). PGF also thanks J. Pettinga and the Erksine Program at the University of Canterbury. Insightful and thorough reviews by Andrew Gleadow and Suzanne Baldwin and comments on various sections by Jeff Benowitz, Chilisa Shorten, and Thomas Warfel greatly improved this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Fitzgerald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fitzgerald, P.G., Malusà, M.G. (2019). Concept of the Exhumed Partial Annealing (Retention) Zone and Age-Elevation Profiles in Thermochronology. In: Malusà, M., Fitzgerald, P. (eds) Fission-Track Thermochronology and its Application to Geology. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-89421-8_9

Download citation

Publish with us

Policies and ethics