Skip to main content

Integration of Fission-Track Thermochronology with Other Geochronologic Methods on Single Crystals

  • Chapter
  • First Online:

Abstract

Fission-track (FT) thermochronology can be integrated with the U–Pb and (U–Th)/He dating methods. All three radiometric dating methods can be applied to single crystals (hereafter referred to as “triple-dating”), allowing more complete and more precise thermal histories to be constrained from single grains. Such an approach is useful across a myriad of geological applications. Triple-dating has been successfully applied to zircon and apatite. However, other U-bearing minerals such as titanite and monazite, which are routinely dated by single methods, are also candidates for this approach. Several analytical procedures can be used to generate U–Pb—FT—(U–Th)/He age triples on single grains. The procedure introduced here combines FT dating by LA-ICPMS and in situ (U–Th)/He dating approach, whereby the U–Pb age is obtained as a by-product of U–Th analysis by LA-ICPMS. In this case, U–Pb, trace element and REE data can be collected simultaneously and used as annealing kinetics parameter or as provenance and petrogenetic indicators. This novel procedure avoids time-consuming irradiation in a nuclear reactor, reduces multiple sample handling steps and allows high sample throughput (predictably on the order of 100 triple-dated crystals in 2 weeks). These attributes and the increasing number of facilities capable of conducting triple-dating indicate that this approach may become more routine in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barbarand J, Carter A, Wood I, Hurford T (2003) Compositional and structural control of fission-track annealing in apatite. Chem Geol 198(1):107–137

    Article  Google Scholar 

  • Belton D, Brown R, Kohn B, Fink D, Farley K (2004) Quantitative resolution of the debate over antiquity of the central Australian landscape: implications for the tectonic and geomorphic stability of cratonic interiors. Earth Planet Sci Lett 219(1):21–34

    Article  Google Scholar 

  • Bernet M (2018) Chapter 15: Exhumation studies of mountain belts based on detrital fission-track analysis on sand and sandstones. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Bernet M, Spiegel C (2004) Introduction: detrital thermochronology. Geol S Am S 378:1–6

    Google Scholar 

  • Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58(1):205–237

    Article  Google Scholar 

  • Bernet M, van der Beek P, Pik R, Huyghe P, Mugnier JL, Labrin E, Szulc A (2006) Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, western Nepal. Basin Res 18(4):393–412

    Article  Google Scholar 

  • Boyce J, Hodges K, Olszewski W, Jercinovic M (2005) He diffusion in monazite: Implications for (U‐Th)/He thermochronometry. Geochem Geophys Geosys 6(12)

    Article  Google Scholar 

  • Boyce J, Hodges K, Olszewski W, Jercinovic M, Carpenter B, Reiners PW (2006) Laser microprobe (U–Th)/He geochronology. Geochim Cosmochim Ac 70(12):3031–3039

    Article  Google Scholar 

  • Boyce J, Hodges K, King D, Crowley JL, Jercinovic M, Chatterjee N, Bowring S, Searle M (2009) Improved confidence in (U‐Th)/He thermochronology using the laser microprobe: an example from a Pleistocene leucogranite, Nanga Parbat, Pakistan. Geochem Geophys Geosys 10(9)

    Article  Google Scholar 

  • Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol Soc Am Bull 110(8):985–1009

    Article  Google Scholar 

  • Burtner RL, Nigrini A, Donelick RA (1994) Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt. AAPG Bull 78(10):1613–1636

    Google Scholar 

  • Campbell IH, Reiners PW, Allen CM, Nicolescu S, Upadhyay R (2005) He–Pb double dating of detrital zircons from the Ganges and Indus Rivers: implication for quantifying sediment recycling and provenance studies. Earth Planet Sci Lett 237(3):402–432

    Article  Google Scholar 

  • Carrapa B (2010) Resolving tectonic problems by dating detrital minerals. Geology 38(2):191–192

    Article  Google Scholar 

  • Carrapa B, DeCelles PG, Reiners PW, Gehrels GE, Sudo M (2009) Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the Central Andes: a multiphase tectonothermal history. Geology 37(5):407–410

    Article  Google Scholar 

  • Carter A (2018) Chapter 14: Thermochronology on sand and sandstones for stratigraphic and provenance studies. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Carter A, Moss SJ (1999) Combined detrital-zircon fission-track and U–Pb dating: a new approach to understanding hinterland evolution. Geology 27(3):235–238

    Article  Google Scholar 

  • Carter A, Bristow C (2000) Detrital zircon geochronology: enhancing the quality of sedimentary source information through improved methodology and combined U–Pb and fission-track techniques. Basin Res 12(1):47–57

    Article  Google Scholar 

  • Carter A, Bristow C (2003) Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: a study of the Khorat Plateau Basin, eastern Thailand. Basin Res 15(2):271–285

    Article  Google Scholar 

  • Chamberlain KR, Bowring SA (2001) Apatite–feldspar U–Pb thermochronometer: a reliable, mid-range (∼450 °C), diffusion-controlled system. Chem Geol 172(1):173–200

    Article  Google Scholar 

  • Cherniak D (1993) Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chem Geol 110(1–3):177–194

    Article  Google Scholar 

  • Cherniak DJ (2010) Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime. Rev Mineral Geochem 72(1):827–869

    Article  Google Scholar 

  • Cherniak D, Watson E (2001) Pb diffusion in zircon. Chem Geol 172(1):5–24

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2003) Diffusion in zircon. Rev Mineral Geochem 53(1):113–143

    Article  Google Scholar 

  • Cherniak D, Lanford W, Ryerson F (1991) Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochim Cosmochim Ac 55(6):1663–1673

    Article  Google Scholar 

  • Cherniak D, Watson EB, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Ac 68(4):829–840

    Article  Google Scholar 

  • Chew DM, Donelick RA (2012) Combined apatite fission track and U–Pb dating by LA-ICP-MS and its application in apatite provenance analysis. Quant Miner Microanal Sediments Sed Rocks: Minerall Ass Can Short Course 42:219–247

    Google Scholar 

  • Chew DM, Sylvester PJ, Tubrett MN (2011) U–Pb and Th-Pb dating of apatite by LA-ICPMS. Chem Geol 280(1):200–216

    Article  Google Scholar 

  • Cochrane R, Spikings RA, Chew D, Wotzlaw J-F, Chiaradia M, Tyrrell S, Schaltegger U, Van der Lelij R (2014) High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochim Cosmochim Ac 127:39–56

    Article  Google Scholar 

  • Cox R, Košler J, Sylvester P, Hodych J Apatite fission-track (FT) dating by LAM-ICP-MS analysis. J Conf Abstr, 2000. p 322

    Google Scholar 

  • Coyle D, Wagner G (1998) Positioning the titanite fission-track partial annealing zone. Chem Geol 149(1):117–125

    Article  Google Scholar 

  • Danišík M, Kuhlemann J, Dunkl I, Székely B, Frisch W (2007) Burial and exhumation of Corsica (France) in the light of fission track data. Tectonics 26(1)

    Article  Google Scholar 

  • Danišík M, Sachsenhofer RF, Privalov VA, Panova EA, Frisch W, Spiegel C (2008) Low-temperature thermal evolution of the Azov Massif (Ukrainian Shield—Ukraine)—Implications for interpreting (U–Th)/He and fission track ages from cratons. Tectonophysics 456(3):171–179

    Article  Google Scholar 

  • Danišík M, Pfaff K, Evans NJ, Manoloukos C, Staude S, McDonald BJ, Markl G (2010a) Tectonothermal history of the Schwarzwald ore district (Germany): an apatite triple dating approach. Chem Geol 278(1):58–69

    Article  Google Scholar 

  • Danišík M, Sachsenhofer R, Frisch W, Privalov V, Panova E, Spiegel C (2010b) Thermotectonic evolution of the Ukrainian Donbas Foldbelt revisited: new constraints from zircon and apatite fission track data. Basin Res 22(5):681–698

    Article  Google Scholar 

  • Danišík M, Kuhlemann J, Dunkl I, Evans NJ, Székely B, Frisch W (2012) Survival of ancient landforms in a collisional setting as revealed by combined fission track and (U–Th)/He thermochronometry: a case study from Corsica (France). J Geol 120(2):155–173

    Article  Google Scholar 

  • Danišík M, Fodor L, Dunkl I, Gerdes A, Csizmeg J, Hámor-Vidó M, Evans NJ (2015) A multi-system geochronology in the Ad-3 borehole, Pannonian Basin (Hungary) with implications for dating volcanic rocks by low-temperature thermochronology and for interpretation of (U–Th)/He data. Terra Nova 27(4):258–269

    Article  Google Scholar 

  • Danišík M, McInnes BI, Kirkland CL, McDonald BJ, Evans NJ, Becker T (2017) Seeing is believing: visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals. Science Advances 3(2):e1601121

    Article  Google Scholar 

  • Djimbi DM, Gautheron C, Roques J, Tassan-Got L, Gerin C, Simoni E (2015) Impact of apatite chemical composition on (U–Th)/He thermochronometry: An atomistic point of view. Geochim Cosmochim Ac 167:162–176

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petr 40(3):259–274

    Article  Google Scholar 

  • Donelick RA, Miller DS (1991) Enhanced TINT fission track densities in low spontaneous track density apatites using 252Cf-derived fission fragment tracks: a model and experimental observations. Int J Rad Appl Instr Part D Nuclear Tracks Rad Meas 18(3):301–307

    Article  Google Scholar 

  • Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. Am Mineral 84(9):1224–1234

    Article  Google Scholar 

  • Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission-track analysis. Rev Mineral Geochem 58(1):49–94

    Article  Google Scholar 

  • Donelick R, O’Sullivan P, Ketcham R, Hendriks B, Redfield T (2006) Relative U and Th concentrations from LA-ICP-MS for apatite fission-track grain-age dating. Geochim Cosmochim Ac 70(18):A143

    Article  Google Scholar 

  • Ehlers TA, Farley KA (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet Sci Lett 206(1):1–14

    Article  Google Scholar 

  • Emmel B, Jacobs J, Crowhurst P, Daszinnies M (2007) Combined apatite fission-track and single grain apatite (U–Th)/He ages from basement rocks of central Dronning Maud Land (East Antarctica)—Possible identification of thermally overprinted crustal segments? Earth Planet Sci Lett 264(1):72–88

    Article  Google Scholar 

  • Enkelmann E, Jonckheere R, Wauschkuhn B (2005) Independent fission-track ages (ϕ-ages) of proposed and accepted apatite age standards and a comparison of ϕ-, Z-, ζ-and ζ 0-ages: implications for method calibration. Chem Geol 222(3):232–248

    Article  Google Scholar 

  • Evans NJ, McInnes BI, McDonald B, Danišík M, Jourdan F, Mayers C, Thern E, Corbett D (2013) Emplacement age and thermal footprint of the diamondiferous Ellendale E9 lamproite pipe, Western Australia. Mineralium Deposita 48(3):413–421

    Article  Google Scholar 

  • Evans N, McInnes B, McDonald B, Danišík M, Becker T, Vermeesch P, Shelley M, Marillo-Sialer E, Patterson D (2015) An in situ technique for (U–Th–Sm)/He and U–Pb double dating. J Analyt Atom Spect 30(7):1636–1645

    Article  Google Scholar 

  • Farley K (2000) Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J Geophys Res B 105(B2):2903–2914

    Article  Google Scholar 

  • Farley KA (2002) (U–Th)/He dating: Techniques, calibrations, and applications. Rev Mineral Geochem 47(1):819–844

    Article  Google Scholar 

  • Farley K, Wolf R, Silver L (1996) The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Ac 60(21):4223–4229

    Article  Google Scholar 

  • Fayon A (2011) Fission track dating of monazite: etching efficiencies as a function of U content. Paper presented at GSA Annual Meeting in Minneapolis, 9–12 October 2011

    Google Scholar 

  • Fitzgerald P, Baldwin SL, Webb L, O’Sullivan PB (2006) Interpretation of (U–Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chem Geol 225(1):91–120

    Article  Google Scholar 

  • Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids: principles and applications. University of California Press

    Google Scholar 

  • Flowerdew M, Millar IL, Curtis ML, Vaughan A, Horstwood M, Whitehouse MJ, Fanning CM (2007) Combined U–Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica. Geol Soc Am Bull 119(3–4):275–288

    Article  Google Scholar 

  • Flowers RM (2009) Exploiting radiation damage control on apatite (U–Th)/He dates in cratonic regions. Earth Planet Sci Lett 277(1):148–155

    Article  Google Scholar 

  • Flowers R, Farley K (2012) Apatite 4He/3He and (U–Th)/He evidence for an ancient Grand Canyon. Science 338(6114):1616–1619

    Article  Google Scholar 

  • Flowers R, Farley K (2013) Response to Comments on “Apatite 4He/3He and (U–Th)/He evidence for an ancient Grand Canyon”. Science 340(6129):143

    Article  Google Scholar 

  • Flowers RM, Kelley SA (2011) Interpreting data dispersion and “inverted” dates in apatite (U–Th)/He and fission-track datasets: an example from the US midcontinent. Geochim Cosmochim Ac 75(18):5169–5186

    Article  Google Scholar 

  • Flowers R, Shuster D, Wernicke B, Farley K (2007) Radiation damage control on apatite (U–Th)/He dates from the Grand Canyon region, Colorado Plateau. Geology 35(5):447–450

    Article  Google Scholar 

  • Flowers RM, Ketcham RA, Shuster DL, Farley KA (2009) Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Ac 73(8):2347–2365

    Article  Google Scholar 

  • Flowers RM, Farley KA, Ketcham RA (2015) A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon. Earth Planet Sci Lett 432:425–435

    Article  Google Scholar 

  • Flowers RM, Farley KA, Ketcham RA (2016) Response to comment on “A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon”. Earth Planet Sci Lett 441:213

    Article  Google Scholar 

  • Fox M, Shuster DL (2014) The influence of burial heating on the (U–Th)/He system in apatite: Grand Canyon case study. Earth Planet Sci Lett 397:174–183

    Article  Google Scholar 

  • Galbraith R, Laslett G (1993) Statistical models for mixed fission track ages. Nuclear Tracks Rad Meas 21(4):459–470

    Article  Google Scholar 

  • Gallagher K (2012) Transdimensional inverse thermal history modeling for quantitative thermochronology. J Geophys Res: Sol Ea 117 (B2)

    Article  Google Scholar 

  • Gallagher K (2016) Comment on “A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon” by Flowers, Farley and Ketcham. Earth Planet Sci Lett 441:211–212

    Article  Google Scholar 

  • Gallagher K, Brown R, Johnson C (1998) Fission track analysis and its applications to geological problems. Ann Rev Earth Planet Sci 26(1):519–572

    Article  Google Scholar 

  • Gardés E, Jaoul O, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2006) Pb diffusion in monazite: an experimental study of Pb2+ + Th4+ ⇔ 2Nd3+ interdiffusion. Geochim Cosmochim Ac 70(9):2325–2336

    Article  Google Scholar 

  • Garver JI (2003) Etching zircon age standards for fission-track analysis. Rad Meas 37(1):47–53

    Article  Google Scholar 

  • Garver JI, Kamp PJ (2002) Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the Southern Alps. New Zealand. Tectonophysics 349(1):203–219

    Article  Google Scholar 

  • Gautheron C, Tassan-Got L (2010) A Monte Carlo approach to diffusion applied to noble gas/helium thermochronology. Chem Geol 273(3):212–224

    Article  Google Scholar 

  • Gleadow A (1981) Fission-track dating methods: what are the real alternatives? Nuclear Tracks 5(1–2):3–14

    Article  Google Scholar 

  • Gleadow A, Fitzgerald P (1987) Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet Sci Lett 82(1–2):1–14

    Article  Google Scholar 

  • Gleadow A, Lovering J (1974) The effect of weathering on fission track dating. Earth Planet Sci Lett 22(2):163–168

    Article  Google Scholar 

  • Gleadow A, Duddy I, Lovering J (1983) Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential. Austr Petrol Expl Ass J 23:93–102

    Google Scholar 

  • Gleadow A, Duddy I, Green PF, Lovering J (1986a) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib Mineral Petr 94(4):405–415

    Article  Google Scholar 

  • Gleadow AJ, Duddy IR, Green PF, Hegarty KA (1986b) Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth Planet Sci Lett 78(2–3):245–254

    Article  Google Scholar 

  • Gleadow AJ, Gleadow SJ, Belton DX, Kohn BP, Krochmal MS, Brown RW (2009) Coincidence mapping-a key strategy for the automatic counting of fission tracks in natural minerals. Geol Soc Spec Publ 324(1):25–36

    Article  Google Scholar 

  • Gleadow AJ, Kohn BP, Lugo-Zazueta R, Alimanovic A (2012) The use of coupled image analysis and laser-ablation ICP-MS in fission track thermochronology. In: Goldschmidt Conference Abstracts 1765, Montreal, 24–29 June, 2012

    Google Scholar 

  • Gleadow AJ, Kohn B, Seiler C (2018) Chapter 4: the future of fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Green P, Duddy I (2006) Interpretation of apatite (U–Th)/He ages and fission track ages from cratons. Earth Planet Sci Lett 244(3):541–547

    Article  Google Scholar 

  • Green P, Duddy I, Laslett G, Hegarty K, Gleadow AW, Lovering J (1989a) Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chem Geol: Isotope Geosc Sect 79(2):155–182

    Google Scholar 

  • Green PF, Duddy IR, Gleadow AJ, Lovering JF (1989b) Apatite fission-track analysis as a paleotemperature indicator for hydrocarbon exploration. In: Thermal history of sedimentary basins. Springer, pp 181–195

    Chapter  Google Scholar 

  • Green PF, Crowhurst PV, Duddy IR, Japsen P, Holford SP (2006) Conflicting (U–Th)/He and fission track ages in apatite: enhanced He retention, not anomalous annealing behaviour. Earth Planet Sci Lett 250(3):407–427

    Article  Google Scholar 

  • Guenthner WR, Reiners PW, Ketcham RA, Nasdala L, Giester G (2013) Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U–Th)/He thermochronology. Am J Sci 313(3):145–198

    Article  Google Scholar 

  • Hanchar JM, Hoskin PW (2003) Zircon–reviews in mineralogy and geochemistry, vol 53. Mineralogical society of America/geochemical society, p 500

    Google Scholar 

  • Hansen K, Reiners PW (2006) Low temperature thermochronology of the southern East Greenland continental margin: evidence from apatite (U–Th)/He and fission track analysis and implications for intermethod calibration. Lithos 92(1):117–136

    Article  Google Scholar 

  • Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford AJ (2004) Apatite fission-track chronometry using laser ablation ICP-MS. Chem Geol 207(3):135–145

    Article  Google Scholar 

  • Hawkins DP, Bowring SA (1999) U–Pb monazite, xenotime and titanite geochronological constraints on the prograde to post-peak metamorphic thermal history of Paleoproterozoic migmatites from the Grand Canyon, Arizona. Contrib Mineral Petr 134(2):150–169

    Article  Google Scholar 

  • Hendriks BWH (2003) Cooling and Denudation of the Norwegian and Barents Sea Margins, Northern Scandinavia: Constrained by Apatite Fission Track and (U–Th) He Thermochronology. Vrije universiteit

    Google Scholar 

  • Hendriks B, Redfield T (2005) Apatite fission track and (U–Th)/He data from Fennoscandia: an example of underestimation of fission track annealing in apatite. Earth Planet Sci Lett 236(1):443–458

    Article  Google Scholar 

  • Hendriks BWH, Redfield TF (2006) Reply to: comment on “Apatite fission track and (U–Th)/He data from Fennoscandia: an example of underestimation of fission track annealing in apatite” by BWH hendriks and TF redfield. Earth Planet Sci Lett 248(1–2):569–577

    Google Scholar 

  • Horne AM, van Soest MC, Hodges KV, Tripathy-Lang A, Hourigan JK (2016) Integrated single crystal laser ablation U/Pb and (U–Th)/He dating of detrital accessory minerals–Proof-of-concept studies of titanites and zircons from the Fish Canyon tuff. Geochim Cosmochim Ac 178:106–123

    Article  Google Scholar 

  • Hourigan JK, Reiners PW, Brandon MT (2005) U–Th zonation-dependent alpha-ejection in (U–Th)/He chronometry. Geochim Cosmochim Ac 69(13):3349–3365

    Article  Google Scholar 

  • House M, Kohn B, Farley K, Raza A (2002) Evaluating thermal history models for the Otway Basin, southeastern Australia, using (U–Th)/He and fission-track data from borehole apatites. Tectonophysics 349(1):277–295

    Article  Google Scholar 

  • Hurford AJ (1986) Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib Mineral Petr 92(4):413–427

    Article  Google Scholar 

  • Hurford AJ (2018) Chapter 1: an historical perspective on fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Hurley PM (1952) Alpha ionization damage as a cause of low helium ratios. Eos, Trans Am Geophys Union 33(2):174–183

    Article  Google Scholar 

  • Jennings E, Marschall H, Hawkesworth C, Storey C (2011) Characterization of magma from inclusions in zircon: apatite and biotite work well, feldspar less so. Geology 39(9):863–866

    Article  Google Scholar 

  • Jolivet M, Dempster T, Cox R (2003) Distribution of U and Th in apatites: implications for U–Th/He thermo chronology. CR Geosci, 899–906

    Google Scholar 

  • Jonckheere R, Ratschbacher L (2015) Standardless fission-track dating of the Durango apatite age standard. Chem Geol 417:44–57

    Article  Google Scholar 

  • Karlstrom KE, Lee J, Kelley S, Crow R, Young RA, Lucchitta I, Beard LS, Dorsey R, Ricketts JW, Dickinson WR, Crossey L (2013) Comment on “Apatite 4He/3He and (U-Th)/He evidence for an ancient grand canyon”. Science 340(6129):143. http://dx.doi.org/10.1126/science.1233982

    Article  Google Scholar 

  • Ketcham RA (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 58(1):275–314

    Article  Google Scholar 

  • Ketcham R (2018) Chapter 3: fission track annealing: from geologic observations to thermal modeling. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. Am Mineral 84(9):1235–1255

    Article  Google Scholar 

  • Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007a) Improved measurement of fission-track annealing in apatite using c-axis projection. Am Mineral 92(5–6):789–798

    Article  Google Scholar 

  • Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007b) Improved modeling of fission-track annealing in apatite. Am Mineral 92(5–6):799–810

    Article  Google Scholar 

  • Ketcham RA, Donelick RA, Balestrieri ML, Zattin M (2009) Reproducibility of apatite fission-track length data and thermal history reconstruction. Earth Planet Sci Lett 284(3):504–515

    Article  Google Scholar 

  • Ketcham RA, Guenthner WR, Reiners PW (2013) Geometric analysis of radiation damage connectivity in zircon, and its implications for helium diffusion. Am Mineral 98(2–3):350–360

    Article  Google Scholar 

  • Kinny PD, Maas R (2003) Lu–Hf and Sm–Nd isotope systems in zircon. Rev Mineral Geochem 53(1):327–341

    Article  Google Scholar 

  • Kirkland C, Erickson T, Johnson T, Danišík M, Evans N, Bourdet J, McDonald B (2016a) Discriminating prolonged, episodic or disturbed monazite age spectra: An example from the Kalak Nappe Complex, Arctic Norway. Chem Geol 424:96–110

    Article  Google Scholar 

  • Kirkland C, Spaggiari C, Johnson T, Smithies R, Danišík M, Evans N, Wingate M, Clark C, Spencer C, Mikucki E (2016b) Grain size matters: implications for element and isotopic mobility in titanite. Precambrian Res 278:283–302

    Article  Google Scholar 

  • Kohn BP, Gleadow A (2018) Chapter 21: application of low-temperature thermochronology to craton evolution. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Kohn BP, Green PF (2002) Low temperature thermochronology: from tectonics to landscape evolution. Elsevier

    Article  Google Scholar 

  • Kohn BP, Lorencak M, Gleadow AJ, Kohlmann F, Raza A, Osadetz KG, Sorjonen-Ward P (2009) A reappraisal of low-temperature thermochronology of the eastern Fennoscandia Shield and radiation-enhanced apatite fission-track annealing. Geol Soc Spec Publ 324(1):193–216

    Article  Google Scholar 

  • Kohn BP, Chung L, Gleadow A (2018) Chapter 2: fission-track analysis: field collection, sample preparation and data acquisition. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Košler J, Sylvester PJ (2003) Present trends and the future of zircon in geochronology: laser ablation ICPMS. Rev Mineral Geochem 53(1):243–275

    Article  Google Scholar 

  • Krogh T (1982) Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Ac 46(4):637–649

    Article  Google Scholar 

  • Ksienzyk AK, Dunkl I, Jacobs J, Fossen H, Kohlmann F (2014) From orogen to passive margin: constraints from fission track and (U–Th)/He analyses on Mesozoic uplift and fault reactivation in SW Norway. Geol Soc Spec Publ 390(SP390):327

    Google Scholar 

  • Lee J, Stockli D, Kelley S, Pederson J, Karlstrom K, Ehlers T (2013) New thermochronometric constraints on the Tertiary landscape evolution of the central and eastern Grand Canyon, Arizona. Geosphere 9(2):216–228

    Article  Google Scholar 

  • Lisker F, Ventura B, Glasmacher U (2009) Apatite thermochronology in modern geology. Geol Soc Spec Publ 324(1):1–23

    Article  Google Scholar 

  • Liu W, Zhang J, Sun T, Wang J (2014) Application of apatite U–Pb and fission-track double dating to determine the preservation potential of magnetite–apatite deposits in the Luzong and Ningwu volcanic basins, eastern China. J Geochem Expl 138:22–32

    Article  Google Scholar 

  • Lorencak M (2003) Low temperature thermochronology of the Canadian and Fennoscandian Shields: Integration of apatite fission track and (U–Th)/He methods. University of Melbourne, School of Earth Sciences

    Google Scholar 

  • Malusà MG, Fitzgerald PG (2018) Chapter 8: from cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Malusà MG, Fitzgerald PG (2018) Chapter 10: application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Malusà MG, Garzanti E (2018) Chapter 7: the sedimentology of detrital thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Malusà MG, Danišík M, Kuhlemann J (2016) Tracking the Adriatic-slab travel beneath the Tethyan margin of Corsica-Sardinia by low-temperature thermochronometry. Gondwana Res 31:135–149

    Article  Google Scholar 

  • Malusà MG, Wang J, Garzanti E, Liu ZC, Villa IM, Wittmann H (2017) Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: implications for prove-nance discrimination and the lag-time approach to detrital thermochronology. Lithos 290–291:48–59

    Article  Google Scholar 

  • McDowell FW, McIntosh WC, Farley KA (2005) A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chem Geol 214(3):249–263

    Article  Google Scholar 

  • McInnes BI, Evans NJ, Fu FQ, Garwin S (2005) Application of thermochronology to hydrothermal ore deposits. Rev Mineral Geochem 58(1):467–498

    Article  Google Scholar 

  • McInnes BI, Evans NJ, McDonald BJ, Kinny PD, Jakimowicz J (2009) Zircon U–Th-Pb-He double dating of the Merlin kimberlite field, Northern Territory, Australia. Lithos 112:592–599

    Article  Google Scholar 

  • Meesters A, Dunai T (2002a) Solving the production-diffusion equation for finite diffusion domains of the various shapes, part 1; implications for low temperature (U–Th)/He thermochronology

    Google Scholar 

  • Meesters A, Dunai T (2002b) Solving the production-diffusion equation for finite diffusion domains of various shapes: Part II. Application to cases with α-ejection and nonhomogeneous distribution of the source. Chem Geol 186(3):347–363

    Article  Google Scholar 

  • Moore TE, O’Sullivan PB, Potter CJ, Donelick RA (2015) Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism. Geosphere 11(1):93–122

    Article  Google Scholar 

  • Morton A, Yaxley G (2007) Detrital apatite geochemistry and its application in provenance studies. Geol S Am S 420:319–344

    Google Scholar 

  • Parrish RR, Noble SR (2003) Zircon U–Th-Pb geochronology by isotope dilution—thermal ionization mass spectrometry (ID-TIMS). Rev Mineral Geochem 53(1):183–213

    Article  Google Scholar 

  • Price P, Walker R (1963) Fossil tracks of charged particles in mica and the age of minerals. J Geophys Res 68(16):4847–4862

    Article  Google Scholar 

  • Rahl JM, Reiners PW, Campbell IH, Nicolescu S, Allen CM (2003) Combined single-grain (U–Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone. Utah Geol 31(9):761–764

    Article  Google Scholar 

  • Rahn MK, Brandon MT, Batt GE, Garver JI (2004) A zero-damage model for fission-track annealing in zircon. Am Mineral 89(4):473–484

    Article  Google Scholar 

  • Reiners PW (2004) Thermochronology of wildfire and fault heating through single-grain (U–Th)/He and fission-track double-dating. In: Conference Abstracts of the GSA Annual Meeting, Denver, 7–10, 2004

    Google Scholar 

  • Reiners PW (2005) Zircon (U–Th)/He thermochronometry. Rev Mineral Geochem 58(1):151–179

    Article  Google Scholar 

  • Reiners PW, Ehlers TA (2005) Low-temperature thermochronology: techniques, interpretations, and applications; Ed.: PW Reiners, TA Ehlers. Miner Soc Am. Washington

    Google Scholar 

  • Reiners PW, Farley KA (1999) Helium diffusion and (U–Th)/He thermochronometry of titanite. Geochim Cosmochim Ac 63(22):3845–3859

    Article  Google Scholar 

  • Reiners PW, Farley KA (2001) Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth Planet Sci Lett 188(3):413–420

    Article  Google Scholar 

  • Reiners P, Campbell I, Nicolescu S, Allen C, Garver J, Hourigan J, Cowan D (2004) Double-and triple-dating of single detrital zircons with (U–Th)/He, fission-track, and U/Pb systems, and examples from modern and ancient sediments of the western US. In: AGU Fall Meeting Abstracts, 2004

    Google Scholar 

  • Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004b) Zircon (U–Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Ac 68(8):1857–1887

    Article  Google Scholar 

  • Reiners PW, Campbell I, Nicolescu S, Allen CM, Hourigan J, Garver J, Mattinson J, Cowan D (2005) (U–Th)/(He-Pb) double dating of detrital zircons. Am J Sci 305(4):259–311

    Article  Google Scholar 

  • Schaltegger U, Schmitt A, Horstwood M (2015) U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities. Chem Geol 402:89–110

    Article  Google Scholar 

  • Schoene B, Latkoczy C, Schaltegger U, Günther D (2010) A new method integrating high-precision U–Pb geochronology with zircon trace element analysis (U–Pb TIMS-TEA). Geochim Cosmochim Ac 74(24):7144–7159

    Article  Google Scholar 

  • Shen C-B, Donelick RA, O’Sullivan PB, Jonckheere R, Yang Z, She Z-B, Miu X-L, Ge X (2012) Provenance and hinterland exhumation from LA-ICP-MS zircon U–Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China. Sed Geol 281:194–207

    Article  Google Scholar 

  • Shuster DL, Farley KA (2009) The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite. Geochim Cosmochim Ac 73(1):183–196

    Article  Google Scholar 

  • Shuster D, Flowers R, Farley K (2006) Radiation damage and helium diffusion kinetics in apatite. Geochim Cosmochim Ac 70(18):A590

    Article  Google Scholar 

  • Siebel W, Danišík M, Chen F (2009) From emplacement to unroofing: thermal history of the Jiazishan gabbro, Sulu UHP terrane, China. Mineral Petrol 96(3–4):163–175

    Article  Google Scholar 

  • Söderlund P, Juez-Larré J, Page LM, Dunai TJ (2005) Extending the time range of apatite (U–Th)/He thermochronometry in slowly cooled terranes: Palaeozoic to Cenozoic exhumation history of southeast Sweden. Earth Planet Sci Lett 239(3):266–275

    Article  Google Scholar 

  • Jt Stacey, Kramers J (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221

    Article  Google Scholar 

  • Stockli DF (2005) Application of low-temperature thermochronometry to extensional tectonic settings. Rev Mineral Geochem 58(1):411–448

    Article  Google Scholar 

  • Stockli DF, Farley KA (2004) Empirical constraints on the titanite (U–Th)/He partial retention zone from the KTB drill hole. Chem Geol 207(3):223–236

    Article  Google Scholar 

  • Stockli DF, Farley KA, Dumitru TA (2000) Calibration of the apatite (U–Th)/He thermochronometer on an exhumed fault block, White Mountains. Calif Geol 28(11):983–986

    Article  Google Scholar 

  • Svojtka M, Košler J (2002) Fission-track dating of zircon by laser ablation ICPMS. In: Conference Abstracts of the Goldchmidt Conference, Geochim Cosmochim Ac, 2002. vol 15 A, pp A756–A756, Davos, 18–23 August, 2002

    Google Scholar 

  • Tagami T (2005) Zircon fission-track thermochronology and applications to fault studies. Rev Mineral Geochem 58(1):95–122

    Article  Google Scholar 

  • Thomson SN, Gehrels GE, Ruiz J, Buchwaldt R (2012) Routine low‐damage apatite U‐Pb dating using laser ablation–multicollector–ICPMS. Geochem Geophys Geosys 13(2)

    Article  Google Scholar 

  • Tripathy-Lang A, Hodges KV, Monteleone BD, Soest MC (2013) Laser (U–Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments. J Geophys Res: Earth 118(3):1333–1341

    Article  Google Scholar 

  • van Soest MC, Hodges KV, Wartho JA, Biren MB, Monteleone BD, Ramezani J, Spray JG, Thompson LM (2011) (U‐Th)/He dating of terrestrial impact structures: the Manicouagan example. Geochem Geophys Geosys 12(5)

    Google Scholar 

  • Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224(3):441–451

    Article  Google Scholar 

  • Vermeesch P (2018) Chapter 6: statistics for fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Vermeesch P, Miller DD, Graham SA, De Grave J, McWilliams MO (2006) Multimethod detrital thermochronology of the Great Valley Group near New Idria, California. Geol Soc Am Bull 118(1–2):210–218

    Article  Google Scholar 

  • Vermeesch P, Sherlock SC, Roberts NM, Carter A (2012) A simple method for in-situ U–Th–He dating. Geochim Cosmochim Ac 79:140–147

    Article  Google Scholar 

  • Wagner G, Reimer G (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett 14(2):263–268

    Article  Google Scholar 

  • Wagner G, van den Haute P (1992) Fission-track dating. Enke, Stuttgart, p 285

    Book  Google Scholar 

  • Weise C, van den Boogaart KG, Jonckheere R, Ratschbacher L (2009) Annealing kinetics of Kr-tracks in monazite: implications for fission-track modelling. Chem Geol 260(1):129–137

    Article  Google Scholar 

  • Weisheit A, Bons P, Danišík M, Elburg M (2014) Crustal-scale folding: Palaeozoic deformation of the Mt Painter Inlier, South Australia. Geol Soc Spec Publ 394(1):53–77

    Article  Google Scholar 

  • Zattin M, Balestrieri ML, Hasebe N, Ketcham R, Seward D, Sobel E, Spiegel C (2008) Notes from the first workshop of the IGCP 543-low temperature thermochronology: applications and interlaboratory calibration. Episodes 31(3):356–357

    Google Scholar 

  • Zattin M, Andreucci B, Thomson SN, Reiners PW, Talarico FM (2012) New constraints on the provenance of the ANDRILL AND‐2A succession (western Ross Sea, Antarctica) from apatite triple dating. Geochem Geophys Geosys 13(10)

    Article  Google Scholar 

  • Zaun P, Wagner G (1985) Fission-track stability in zircons under geological conditions. Nucl Tracks Rad Meas 10(3):303–307

    Google Scholar 

  • Zeitler P, Herczeg A, McDougall I, Honda M (1987) U–Th-He dating of apatite: a potential thermochronometer. Geochim Cosmochim Ac 51(10):2865–2868

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the AuScope NCRIS2 program and Australian Scientific Instruments Pty Ltd. I would like to thank M. G. Malusà and P. G. Fitzgerald for editorial handling and help in conceiving Fig. 5.5, I. Dunkl for introducing me into FT world, N. Evans for training me in U–Th analysis, improvement of the manuscript, provision of apatite U–Pb data and constructive comments, D. Patterson for training me in Helium analysis and troubleshooting, C. Kirkland for stimulating discussions and processing of apatite U–Pb data, B. McDonald for development of RESOchron methods and help with LA-ICPMS analysis, T. Becker for help with AFM work, and C. May and C. Scadding from TSW Analytical for access to the solution ICPMS laboratory. I am grateful for the support of B. McInnes, M. Shelley, B. Godfrey, D. Gibbs, C. Gabay, A. Norris, P. Lanc and M. Hamel throughout the development of the RESOchron instrumentation. Constructive reviews by M. Zattin, B. Carrapa and the editors are acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Danišík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danišík, M. (2019). Integration of Fission-Track Thermochronology with Other Geochronologic Methods on Single Crystals. In: Malusà, M., Fitzgerald, P. (eds) Fission-Track Thermochronology and its Application to Geology. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-89421-8_5

Download citation

Publish with us

Policies and ethics