Skip to main content

Fission-Track Annealing: From Geologic Observations to Thermal History Modeling

  • Chapter
  • First Online:
Fission-Track Thermochronology and its Application to Geology

Abstract

This chapter reviews the evolving state of knowledge concerning fission-track (FT) annealing, primarily in apatite and zircon, based on theory, experiments, and geological observations. Multiple insights into track structure, formation, and evolution arise from transmission electron microscopy, small-angle X-ray scattering, atomic force microscopy, and molecular dynamics computer modeling. Our principal knowledge, however, comes from experiments in which spontaneous or induced tracks are annealed, etched, and measured, the results statistically fitted, and their predictions compared against geological benchmarks. This empirical approach has proven effective and resilient, though physical understanding remains an ultimate goal. The precise mechanism by which lattice damage anneals, and how it varies among minerals and damage types, remains unknown. Multiple similarities between apatite and zircon suggest equivalent underlying processes. Both minerals demonstrate annealing anisotropy, and its characterization is crucial for understanding both track shortening and density reduction. The fanning curvilinear equation, featuring curved iso-annealing lines on an Arrhenius-type diagram, has been the most successful for matching data spanning timescales from seconds to hundreds of millions of years. A super-model featuring a single set of iso-annealing lines describes all apatite experimental data to date. Annealing rates vary with both anion and cation substitutions, and more work is required to ascertain how these substitutions interact. Other areas for further research include differences between spontaneous and induced tracks, and possible additional processes affecting length and density evolution, such as seasoning. Thermal history inversion simultaneously leverages and tests our models, and accounting for kinetic variation is key for doing it soundly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afra B, Lang M, Bierschenk T, Rodriguez MD, Weber WJ, Trautmann C, Ewing RC, Kirby N, Kluth P (2014) Annealing behaviour of ion tracks in olivine, apatite and britholite. Nucl Instr Meth Phys Res B 326:126–130

    Article  Google Scholar 

  • Afra B, Lang M, Rodriguez MD, Zhang F, Giulian R, Kirby N, Ewing RC, Trautmann C, Toulemonde M, Kluth P (2011) Annealing kinetics of latent particle tracks in Durango apatite. Phys Rev B 83:064116

    Article  Google Scholar 

  • Afra B, Rodriguez MD, Lang M, Ewing RC, Kirby N, Trautmann C, Kluth P (2012) SAXS study of ion tracks in San Carlos olivine and Durango apatite. Nucl Instr Meth Phys Res B 286:243–246

    Article  Google Scholar 

  • Barbarand J, Carter A, Wood I, Hurford AJ (2003) Compositional and structural control of fission-track annealing in apatite. Chem Geol 198:107–137

    Article  Google Scholar 

  • Bernet M (2009) A field-based estimate of the zircon fission-track closure temperature. Chem Geol 259:181–189

    Article  Google Scholar 

  • Bertagnolli E, Keil R, Pahl M (1983) Thermal history and length distribution of fission tracks in apatite: part I. Nucl Tracks 7:163–177

    Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J Royal Statistical Soc B 26:211–252

    Google Scholar 

  • Braddy D, Hutcheon ID, Price PB (1975) Crystal chemistry of Pu and U and concordant fission track ages of lunar zircons and whitlockites. In: Merrill RB, Hubbard NJ, Mendell WW, Williams RJ (eds) Proceedings of the 6th lunar science conference. Pergamon Press, New York, United States, pp 3587–3600

    Google Scholar 

  • Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol Soc Am Bull 110:985–1009

    Article  Google Scholar 

  • Burtner RL, Nigrini A, Donelick RA (1994) Thermochronology of lower Cretaceous source rocks in the Idaho-Wyoming thrust belt. Am Assoc Petrol Geol Bull 78:1613–1636

    Google Scholar 

  • Carlson WD (1990) Mechanisms and kinetics of apatite fission-track annealing. Am Mineral 75:1120–1139

    Google Scholar 

  • Carlson WD, Donelick RA, Ketcham RA (1999) Variability of apatite fission-track annealing kinetics I: experimental results. Am Mineral 84:1213–1223

    Article  Google Scholar 

  • Carpéna J (1992) Fission track dating of zircon: zircons from mont blanc granite (French-Italian Alps). J Geol 100:411–421

    Article  Google Scholar 

  • Chadderton LT (2003) Nuclear tracks in solids: registration physics and the compound spike. Rad Meas 36:13–34

    Article  Google Scholar 

  • Challandes N, Marquer D, Villa IM (2008) P-T-t modelling, fluid circulation, and 39Ar-40Ar and Rb-Sr mica ages in the Aar Massif shear zones (Swiss Alps). Swiss J Geosci 101:269–288

    Article  Google Scholar 

  • Clauser C, Giese P, Huenges E, Kohl T, Lehmann H, Rybach L, Šafanda J, Wilhelm H, Windloff K, Zoth G (1997) The thermal regime of the crystalline continental crust: Implications from the KTB. J Geophys Res 102:18417–18441

    Article  Google Scholar 

  • Corrigan JD (1993) Apatite fission-track analysis of Oligocene strata in South Texas, U.S.A.: testing annealing models. Chem Geol 104:227–249

    Article  Google Scholar 

  • Coyle DA, Wagner GA, Hejl E, Brown RW, van den Haute P (1997) The Cretaceous and younger thermal history of the KTB site (Germany): apatite fission-track data from the Vorbohrung. Geol Rundsch 86:203–209

    Article  Google Scholar 

  • Crowley KD, Cameron M, Schaefer RL (1991) Experimental studies of annealing etched fission tracks in fluorapatite. Geochim Cosmochim Acta 55:1449–1465

    Article  Google Scholar 

  • Dartyge E, Duraud JP, Langevin Y, Maurette M (1981) New model of nuclear particle tracks in dielectric materials. Phys Rev B 23:5213–5229

    Article  Google Scholar 

  • Donelick RA (1991) Crystallographic orientation dependence of mean etchable fission track length in apatite: an empirical model and experimental observations. Am Mineral 76:83–91

    Google Scholar 

  • Donelick RA, Farley KA, Asimow P, O’Sullivan PB (2003) Pressure dependence of He diffusion and fission-track annealing kinetics in apatite?: experimental results. Geochim Cosmochim Acta 67:A82

    Google Scholar 

  • Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics II: crystallographic orientation effects. Am Mineral 84:1224–1234

    Article  Google Scholar 

  • Donelick RA, Roden MK, Mooers JD, Carpenter BS, Miller DS (1990) Etchable length reduction of induced fission tracks in apatite at room temperature (~23 °C): Crystallographic orientation effects and “initial” mean lengths. Nucl Tracks 17:261–265

    Article  Google Scholar 

  • Duddy IR (1997) Focussing exploration in the Otway basin: understanding timing of source rock maturation. Aust Pet Prod Explor Assoc J 37:178–191

    Google Scholar 

  • Duddy IR, Green PF, Laslett GM (1988) Thermal annealing of fission tracks in apatite 3. Variable temperture behaviour. Chem Geol 73:25–38

    Google Scholar 

  • Durrani SA, Bull RK (1987) Solid state nuclear track detection. Pergamon, Oxford

    Google Scholar 

  • Enkelmann E, Jonckheere R, Wauschkuhn B (2005) Independent fission-track ages (f-ages) of proposed and accepted apatite age standards and a comparison of f-, Z-, z-, and z0- ages: Implications for method calibration. Chem Geol 222:232–248

    Article  Google Scholar 

  • Fleischer RL, Price PB (1964) Glass dating by fission fragment tracks. J Geophys Res 69:331–339

    Article  Google Scholar 

  • Fleischer RL, Price PB, Walker JD (1965a) Effects of temperature, pressure, and ionization of the formation and stability of fission tracks in minerals and glasses. J Geophys Res 70:1497–1502

    Article  Google Scholar 

  • Fleischer RL, Price PB, Walker RM (1965b) Ion explosion spike mechanism for formation of charged-particle tracks in solids. J Appl Phys 36:3645–3652

    Article  Google Scholar 

  • Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids; principles and applications. University of California Press, Berkeley, California, United States

    Google Scholar 

  • Flowers RM, Ketcham RA, Shuster DL, Farley KA (2009) Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Acta 73:2347–2365

    Article  Google Scholar 

  • Gallagher K (1995) Evolving temperature histories from apatite fission-track data. Earth Planet Sci Lett 136:421–435

    Article  Google Scholar 

  • Gallagher K (2012) Transdimensional inverse thermal history modeling for quantitative thermochronology. J Geophys Res 117:B02408

    Google Scholar 

  • Garver JI (2003) Etching zircon age standards for fission-track analysis. Rad Meas 37:47–53

    Article  Google Scholar 

  • Garver JI, Kamp PJJ (2002) Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the Southern Alps, New England. Tectonophysics 349:203–219

    Article  Google Scholar 

  • Garver JI, Reiners PW, Walker LJ, Ramage JM, Perry SE (2005) Implications for timing of andean uplift from thermal resetting of radiation-damaged zircon in the Cordillera Huayhuash, Northern Peru. J Geol 113:117–138

    Article  Google Scholar 

  • Gautheron C, Tassan-Got L, Barbarand J, Pagel M (2009) Effect of alpha-damage annealing on apatite (U-Th)/He thermochronology. Chem Geol 266:157–170

    Article  Google Scholar 

  • Geisler T, Pidgeon RT, Van Bronwijk W, Pleysier R (2001) Kinetics of thermal recovery and recrystallization of partially metamict zircon: a Raman spectroscopic study. Eur J Mineral 13:1163–1176

    Article  Google Scholar 

  • Girstmair A, Ritter W, Märk E, Märk TD (1984) High temperature fission track annealing in natural fluorapatite. Nucl Tracks 8:381–384

    Google Scholar 

  • Gleadow AJW (2014) Thermochronology of the future. In: 14th International conference on thermochronology, Chamonix-Mont Blanc, pp 3–4

    Google Scholar 

  • Gleadow AJW, Belton DX, Kohn BP, Brown RW (2002) Fission track dating of phosphate minerals and the thermochronology of apatite. Rev Mineral Geochem 48:579–630

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR (1981) A natural long-term track annealing experiment for apatite. Nucl Tracks 5:169–174

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnoastic tool for thermal history analysis. Contrib Mineral Petrol 94:405–415

    Article  Google Scholar 

  • Gleadow AJW, Harrison TM, Kohn BL, Lugo-Zazueta R, Phillips D (2015) The fish canyon tuff: a new look at an old low-temperature thermochronology standard. Earth Planet Sci Lett 424:95–108

    Article  Google Scholar 

  • Gleadow AJW, Hurford AJ, Quaife RD (1976) Fission track dating of zircon: improved etching techniques. Earth Planet Sci Lett 33:273–276

    Article  Google Scholar 

  • Gögen K, Wagner GA (2000) Alpha-recoil track dating of quaternary volcanics. Chem Geol 166:127–137

    Article  Google Scholar 

  • Green PF (1988) The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and system calibration. Earth Planet Sci Lett 89:335–352

    Article  Google Scholar 

  • Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1985) Fission-track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nucl Tracks 10:323–328

    Google Scholar 

  • Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1986) Thermal annealing of fission tracks in apatite 1. A qualitative description. Chem Geol 59:237–253

    Article  Google Scholar 

  • Green PF, Duddy IR, Laslett GM (1988) Can fission track annealing in apatite be described by first-order kinetics? Earth Planet Sci Lett 87:216–228

    Article  Google Scholar 

  • Green PF, Duddy IR, Laslett GM, Hegarty KA, Gleadow AJW, Lovering JF (1989) Thermal annealing of fission tracks in apatite 4. Quantitative modeling techniques and extension to geological time scales. Chem Geol 79:155–182

    Google Scholar 

  • Grove M, Harrison TM (1996) 40Ar* diffusion in Fe-rich biotite. Am Mineral 81:940–951

    Article  Google Scholar 

  • Guedes S, Moreira PAFP, Devanathan R, Weber WJ, Hadler JC (2013) Improved zircon fission-track annealing based on reevaluation of annealing data. Phys Chem Min 40:93–106

    Article  Google Scholar 

  • Guenthner WR, Reiners PW, Ketcham RA, Nasdala L, Giester G (2013) Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. Am J Sci 313:145–198

    Article  Google Scholar 

  • Haack U (1978) The stability of fission tracks in epidote and vesuvianite. Earth Planet Sci Lett 30:129–134

    Article  Google Scholar 

  • Haack UK, Potts MJ (1972) Fission track annealing in garnet. Contrib Mineral Petrol 34:343–345

    Article  Google Scholar 

  • Hansen J, Sato M, Russell G, Kharecha P (2013) Climate sensitivity, sea level and atmospheric carbon dioxide. Phil Trans R Soc London A 371:20120294

    Article  Google Scholar 

  • Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT (2009) Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 73:1039–1051

    Article  Google Scholar 

  • Hasebe N, Mori S, Tagami T, Matsui R (2003) Geological partial annealing zone of zircon fission-track system: additional constrains from the deep drilling MITI-Nishikubiki and MITI-Mishima. Chem Geol 199:45–52

    Article  Google Scholar 

  • Hasebe N, Tagami T, Nishimura S (1994) Towards zircon fission-track thermochronology: Reference framework for confined track length measurements. Chem Geol 112:169–178

    Article  Google Scholar 

  • Hashemi-Nezhad SR, Durrani SA (1983) Annealing behaviour of alpha-recoil tracks in biotite mica: implications for alpha-recoil dating method. Nuclear Tracks 7:141–146

    Google Scholar 

  • Hendricks BWH, Redfield TF (2005) Apatite fission track and (U-Th)/He data from Fennoscandia: An example of underestimation of fission track annealing in apatite. Earth Planet Sci Lett 236:443–458

    Article  Google Scholar 

  • Huang WH, Walker RM (1967) Fossil alpha-particle recoil tracks: a new method of age determination. Science 155:1103–1106

    Article  Google Scholar 

  • Hughes JM, Cameron M, Crowley KD (1989) Structural variations in natural F, OH, and Cl apatites. Am Mineral 74:870–876

    Google Scholar 

  • Hughes JM, Cameron M, Crowley KD (1990) Crystal structures of natural ternary apatite: solid solution in the Ca5(PO4)3X (X = F, OH, Cl) system. Am Mineral 75:295–304

    Google Scholar 

  • Hurford AJ (1986) Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib Mineral Petrol 92:413–427

    Article  Google Scholar 

  • Hurford AJ (2018) An historical perspective on fission-track thermochronology (Chapter 1). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Issler DR (1996) An inverse model for extracting thermal histories from apatite fission track data: instructions and software for the Windows 95 environment. Geolgical Survey Canada, p 84

    Google Scholar 

  • Ito H, Tanaka K (1995) Insights on the thermal history of the Valles caldera, New Mexico: evidence from zircon fission-track analysis. J Volcan Geotherm Res 67:153–160

    Article  Google Scholar 

  • Jaskierowicz G, Dunlop A, Jonckheere R (2004) Track formation in fluorapatite irradiated with energetic cluster ions. Nucl Instr Meth Phys Res B 222:213–227

    Article  Google Scholar 

  • Jenkin GRT, Ellam RM, Rogers G, Stuart FM (2001) An investigation of closure temperature of the biotite Rb-Sr system: The importance of cation exchange. Geochim Cosmochim Acta 65:1141–1160

    Article  Google Scholar 

  • Jonckheere R (2003a) On methodical problems in estimating geological temperature and time from measurements of fission tracks in apatite. Rad Meas 36:43–55

    Article  Google Scholar 

  • Jonckheere R (2003b) On the densities of etchable fission tracks in a mineral and co-irradiated external detector with reference to fission-track dating of minerals. Chem Geol 200:41–58

    Article  Google Scholar 

  • Jonckheere R, Tamer MT, Wauschkuhn B, Wauschkuhn F, Ratschbacher L (2017) Single-track length measurements of step-etched fission tracks in Durango apatite: “Vorsprung durch Technik”. Am Mineral 102

    Google Scholar 

  • Jonckheere R, van den Haute P, Ratschbacher L (2015) Standardless fission-track dating of the Durango apatite age standard. Chem Geol 417:44–57

    Article  Google Scholar 

  • Kasuya M, Naeser CW (1988) The effect of α-damage on fission-track annealing in zircon. Nucl Tracks 14:477–480

    Article  Google Scholar 

  • Ketcham RA (2003) Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements. Am Mineral 88:817–829

    Article  Google Scholar 

  • Ketcham RA (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 58(1):275–314

    Article  Google Scholar 

  • Ketcham RA, Carter A, Hurford AJ (2015) Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite. Am Mineral 100:1452–1468

    Article  Google Scholar 

  • Ketcham RA, Carter AC, Donelick RA, Barbarand J, Hurford AJ (2007a) Improved measurement of fission-track annealing in apatite using c-axis projection. Am Mineral 92:789–798

    Article  Google Scholar 

  • Ketcham RA, Carter AC, Donelick RA, Barbarand J, Hurford AJ (2007b) Improved modeling of fission-track annealing in apatite. Am Mineral 92:799–810

    Article  Google Scholar 

  • Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics III: extrapolation to geological time scales. Am Mineral 84:1235–1255

    Article  Google Scholar 

  • Ketcham RA, Mora A, Parra M (2016) Deciphering exhumation and burial history with multi-sample down-well thermochronometric inverse modelling. Basin Res (early view)

    Article  Google Scholar 

  • Kohlmann F, Kohn BL, Gleadow AJW, Siegle R (2013) Scanning force microscopy of 129Iodine surface impact structures in muscovite, zircon and apatite as proxies for damage of simulated fission fragments in solids. Rad Meas 51–52:83–91

    Article  Google Scholar 

  • Kohn BP, Belton DX, Brown RW, Gleadow AJW, Green PF, Lovering JF (2003) Comment on: “Experimental evidence for teh pressure dependence of fission track annealing in apatite” by A.S. Wendt et al. [Earth Planet. Sci. Lett. 201 (2002) 593–607]. Earth Planet Sci Lett 215:299–306

    Google Scholar 

  • Kohn BP, Lorencak M, Gleadow AJW, Kohlmann F, Raza A, Osadetz KG, Sorjonen-Ward P (2009) A reappraisal of low-temperature thermochronology of the eastern Fennoscandia shield and radiation-enhanced apatite fission-track annealing. Geol Soc Spec Publ 324:193–216

    Article  Google Scholar 

  • Kohn B, Chung L, Gleadow A (2018) Fission-track analysis: field collection, sample preparation and data acquisition (Chapter 2). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Kozlovsky YA (1984) The superdeep well of the Kola Peninsula. Springer-Verlag

    Google Scholar 

  • Lal N, Parshad R, Nagpaul KK (1977) Fission track annealing characteristics of garnet. Lithos 10:129–132

    Article  Google Scholar 

  • Lang M, Lian J, Zhang F, Hendricks BWH, Trautmann C, Neumann R, Ewing RC (2008) Fission tracks simulated by swift heavy ions at crustal pressures and temperatures. Earth Planet Sci Lett 274:355–358

    Article  Google Scholar 

  • Laslett GM, Galbraith RF (1996) Statistical modelling of thermal annealing of fission tracks in apatite. Geochim Cosmochim Acta 60:5117–5131

    Article  Google Scholar 

  • Laslett GM, Gleadow AJW, Duddy IR (1984) The relationship between fission track length and track density in apatite. Nucl Tracks 9:29–38

    Google Scholar 

  • Laslett GM, Green PF, Duddy IR, Gleadow AJW (1987) Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chem Geol 65:1–13

    Article  Google Scholar 

  • Laslett GM, Kendall WS, Gleadow AJW, Duddy IR (1982) Bias in measurement of fission-track length distributions. Nucl Tracks 6:79–85

    Google Scholar 

  • Li N, Wang L, Sun K, Lang M, Trautmann C, Ewing RC (2010) Porous fission fragment tracks in fluorapatite. Phys Rev B 82:144109

    Article  Google Scholar 

  • Li W, Kluth P, Schauries D, Rodriguez MD, Zhang F, Zdorvets MV, Trautmann C, Ewing RC (2014) Effect of orientation on ion track formation in apatite and zircon. Am Mineral 99:1127–1132

    Article  Google Scholar 

  • Li W, Lang M, Gleadow AJW, Zdorvets MV, Ewing RC (2012) Thermal annealing of unetched fission tracks in apatite. Earth Planet Sci Lett 321–322:121–127

    Article  Google Scholar 

  • Li W, Wang L, Lang M, Trautmann C, Ewing RC (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth Planet Sci Lett 302:227–235

    Article  Google Scholar 

  • Malusà MG, Fitzgerald PG (2018) From cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data (Chapter 8). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Marsellos AE, Garver JI (2010) Radiation damage and uranium concentration in zircon as assessed by Raman spectroscopy and neutron irradiation. Am Mineral 95:1192–1201

    Article  Google Scholar 

  • McDowell FW, McIntosh WC, Farley KA (2005) A precise 40Ar-39Ar reference age for Durango apatite (U-Th)/He and fission-track dating standard. Chem Geol 214:249–263

    Article  Google Scholar 

  • Murakami M, Yamada R, Tagami T (2006) Short-term annealing characteristics of spontaneous fission tracks in zircon: a qualitative description. Chem Geol 227:214–222

    Article  Google Scholar 

  • Naeser CW (1981) The fading of fission tracks in the geologic environment—data from deep drill holes. Nucl Tracks 5:248–250

    Article  Google Scholar 

  • Naeser CW, Engels JC, Dodge FC (1970) Fission track annealing and age determination of epidote minerals. J Geophys Res 75:1579–1584

    Article  Google Scholar 

  • Naeser CW, Faul H (1969) Fission track annealing in apatite and sphene. J Geophys Res 74:705–710

    Article  Google Scholar 

  • Naeser CW, Fleischer RL (1975) Age of the apatite at Cerro de Mercado, Mexico: a problem for fission-track annealing corrections. Geophys Res Lett 2:67–70

    Article  Google Scholar 

  • Naeser CW, Forbes RL (1976) Variation of fission track ages with depth in two deep drill holes. Eos 57:363

    Google Scholar 

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231

    Article  Google Scholar 

  • Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictization of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petrol 141:125–144

    Article  Google Scholar 

  • O’Nions RK, Griesshaber E, Oxburgh ER (1989) Rocks that are too hot to handle. Nature 341:391

    Article  Google Scholar 

  • O’Sullivan PB, Parrish RR (1995) The importance of apatite composition and single-grain ages when interpreting fission track data from plutonic rocks: a case study from the Coast Ranges, British Columbia. Earth Planet Sci Lett 132:213–224

    Article  Google Scholar 

  • Ohishi S, Hasebe N (2012) Observations of fission-tracks in zircons by atomic force microscope. Rad Meas 47:548–556

    Article  Google Scholar 

  • Ouchani S, Dran JC, Chaumont J (1997) Evidence of ionization annealing upon helium-ion irradiation of pre-damaged apatite. Nucl Instr Meth Phys Res B 132:447–451

    Article  Google Scholar 

  • Parker P, Cowan R (1976) Some properties of line segment processes. J Appl Prob 13:255–266

    Article  Google Scholar 

  • Parshad R, Saini HS, Nagpaul KK (1978) Fission track etching and annealing phenomenon in phlogopite and their applications. Can J Earth Sci 15:1924–1929

    Article  Google Scholar 

  • Paul TA, Fitzgerald PG (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. Am Mineral 77:336–344

    Google Scholar 

  • Powell JW, Schneider DA, Issler DR (2017) Application of multi-kinetic apatite fission track and (U-Th)/He thermochronology to source rock thermal history: a case study from the Mackenzie Plain, NWT, Canada. Basin Res (early view)

    Google Scholar 

  • Rabone JAL, Carter A, Hurford AJ, De Leeuw NH (2008) Modelling the formation of fission tracks in apatite minerals using molecular dynamics simulations. Phys Chem Min 35:583–596

    Article  Google Scholar 

  • Rabone JAL, De Leeuw NH (2007) Molecular dynamics simulations of fission track annealing in apatite. Geochim Cosmochim Acta 71:A816

    Article  Google Scholar 

  • Rahn MK, Brandon MT, Batt GE, Garver JI (2004) A zero-damage model for fission-track annealing in zircon. Am Mineral 89:473–484

    Article  Google Scholar 

  • Ravenhurst CE, Roden-Tice MK, Miller DS (2003) Thermal annealing of fission tracks in fluorapatite, chlorapatite, manganoapatite, and Durango apatite: experimental results. Can J Earth Sci 40:995–1007

    Article  Google Scholar 

  • Reiners PW (2009) Nonmonotonic thermal histories and contrasting kinetics of multiple thermochronometers. Geochim Cosmochim Acta 73:3612–3629

    Article  Google Scholar 

  • Reiners PW, Farley KA, Hickes HJ (2002) He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics 349:297–308

    Article  Google Scholar 

  • Saini HS, Nagpaul KK (1979) Annealing characteristics of fission tracks in minerals and their applications to earth sciences. Int J Appl Rad Isotop 30:213–231

    Article  Google Scholar 

  • Schauries D, Afra B, Bierschenk T, Lang M, Rodriguez MD, Trautmann C, Li W, Ewing RC, Kluth P (2014) The shape of ion tracks in natural apatite. Nucl Instrum Methods Phys Res, Sect B 326:117–120

    Article  Google Scholar 

  • Schauries D, Lang M, Pakarinen OH, Botis S, Afra B, Rodriguez MD, Djurabekova F, Nordlund K, Severin D, Bender M, Li WX, Trautmann C, Ewing RC, Kirby N, Klutha P (2013) Temperature dependence of ion track formation in quartz and apatite. Appl Crystall 46:1558–1563

    Article  Google Scholar 

  • Soulet S, Carpena J, Chaumont J, Kaitasov O, Ruault MO, Krupa JC (2001) Simulation of the α-annealing effect in apatitic structures by He-ion irradiation: influence of the silicate/phosphate ratio and of the OH−/F− substitution. Nucl Instr Meth Phys Res B 184:383–390

    Article  Google Scholar 

  • Spiegel C, Kohn BL, Raza A, Rainer T, Gleadow AJW (2007) The effect of long-term low-temperature exposure on apatite fission track stability: a natural annealing experiment in the deep ocean. Geochim Cosmochim Acta 71:4512–4537

    Article  Google Scholar 

  • Stormer JCJ, Pierson ML, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am Mineral 78:641–648

    Google Scholar 

  • Storzer D (1970) Fission track dating of volcanic glasses and the thermal history of rocks. Earth Planet Sci Lett 8:55–60

    Article  Google Scholar 

  • Stübner K, Jonckheere R, Ratschbacher L (2015) The densities and dimensions of recoil-track etch pits in mica. Chem Geol 404:52–61

    Article  Google Scholar 

  • Szenes G (1995) General features of latent track formation in magnetic insulators irradiated with swift heavy ions. Phys Rev B 51:8026–8029

    Article  Google Scholar 

  • Tagami T, Carter A, Hurford AJ (1996) Natural long-term annealing of the zircon fission-track system in Vienna Basin deep borehole samples: constraints upon the partial annealing zone and closure temperature. Chem Geol 130

    Google Scholar 

  • Tagami T, Galbraith RF, Yamada R, Laslett GM (1998) Revised annealing kinetics of fission tracks in zircon and geological implications. In: van den Haute P, De Corte F (eds) Advances in fission-track geochronology. Kluwer Academic Publishers, Netherlands, pp 99–112

    Chapter  Google Scholar 

  • Tagami T, Ito H, Nishimura S (1990) Thermal annealing characteristics of spontaneous fission tracks in zircon. Chem Geol 80:159–169

    Google Scholar 

  • Tello CA, Palissari R, Hadler JC, Iunes PJ, Guedes S, Curvo EAC, Paulo SR (2006) Annealing experiments on induced fission tracks in apatite: Measurements of horizontal-confined track lengths and track densities in basal sections and randomly oriented grains. Am Mineral 91:252–260

    Article  Google Scholar 

  • Trachenko K, Dove MT, Salje EKH (2002) Structural changes in zircon under a-decay irradiation. Phys Rev B 65:180101–180103

    Article  Google Scholar 

  • Turnbull D (1956) Phase Changes. In: Seitz F, Turnbull D (eds) Solid state physics. Academic Press, New York, pp 226–309

    Google Scholar 

  • Villa IM (1998) Isotopic closure. Terra Nova 10:42–47

    Article  Google Scholar 

  • Villa IM, Puxeddu M (1994) Geochronology of the Larderello geothermal field: new data and the “closure temperature” issue. Contrib Mineral Petrol 115:415–426

    Article  Google Scholar 

  • Vrolijk P, Donelick RA, Queng J, Cloos M (1992) Testing models of fission track annealing in apatite in a simple thermal setting: site 800, leg 129. In: Larson RL, Lancelot Y (eds) Proceedings of the ocean drilling program, scientific results. Ocean Drilling Program, College Station, TX, pp 169–176

    Google Scholar 

  • Wagner GA, Reimer GM (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett 14:263–268

    Article  Google Scholar 

  • Wauschkuhn B, Jonckheere R, Ratschbacher L (2015a) The KTB apatite fission-track profiles: Building on a firm foundation? Geochim Cosmochim Acta 167:27–62

    Article  Google Scholar 

  • Wauschkuhn B, Jonckheere R, Ratschbacher L (2015b) Xe- and U-tracks in apatite and muscovite near the etching threshold. Nucl Instr Meth Phys Res B 343:146–152

    Article  Google Scholar 

  • Weber WJ (1990) Radiation-induced defects and amorphization in zircon. J Mater Res 5:2687–2697

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698

    Article  Google Scholar 

  • Wendt AS, Vidal O, Chadderton LT (2002) Experimental evidence for the pressure dependence of fission track annealing in apatite. Earth Planet Sci Lett 201:593–607

    Article  Google Scholar 

  • Wesch W, Wendler E (2016) Ion beam modification of solids; ion-solid interaction and radiation damage. In: Car R, Ertl G, Freund HJ, Lüth H, Rocca MA (eds) Springer series in surface sciences. Springer, Switzerland, p 534

    Google Scholar 

  • Yamada R, Murakami M, Tagami T (2007) Statistical modeling of annealing kinetics of fission tracks in zircon; reassessment of laboratory experiments. Chem Geol 236:75–91

    Article  Google Scholar 

  • Yamada R, Tagami T, Nishimura S (1993) Assessment of overetching factor for confined fission-track length measurement in zircon. Chem Geol 104:251–259

    Article  Google Scholar 

  • Yamada R, Tagami T, Nishimura S (1995a) Confined fission-track length measurement of zircon: assessment of factors affecting the paleotemperature estimate. Chem Geol 119:293–306

    Article  Google Scholar 

  • Yamada R, Tagami T, Nishimura S, Ito H (1995b) Annealing kinetics of fission tracks in zircon. Chem Geol 122:249–258

    Article  Google Scholar 

  • Yuan W, Ketcham RA, Gao S, Dong J, Bao Z, Deng J (2009) Annealing behavior of alpha recoil tracks in phlogopite. Chem Geol 266:352–358

    Article  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 415:279–283

    Article  Google Scholar 

  • Zattin M, Bersani D, Carter A (2006) Raman microspectroscopy: a nondestructive tool for routine calibration of apatite composition for fission-track analyses. In: European conference on thermochronology, Bremen, Germany

    Google Scholar 

  • Zhang M, Salje EKH, Capitani GC, Leroux H, Clark AM, Schlüter J, Ewing RC (2000) Annealing of α-decay damage in zircon: a Raman spectroscopic study. J Phys: Condens Matter 12:3131–3148

    Google Scholar 

  • Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM the stopping and range of ions in matter, v05 edn. SRIM Co., Chester, Maryland

    Google Scholar 

Download references

Acknowledgements

I thank M. Tamer for help with data transcription for drafting figures, and R. Yamada for providing the zircon FT length data. Thorough and thoughtful reviews by the editors, T. Tagami, and particularly R. Jonckheere, helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Ketcham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ketcham, R.A. (2019). Fission-Track Annealing: From Geologic Observations to Thermal History Modeling. In: Malusà, M., Fitzgerald, P. (eds) Fission-Track Thermochronology and its Application to Geology. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-89421-8_3

Download citation

Publish with us

Policies and ethics