Skip to main content

Detrital Thermochronology Using Conglomerates and Cobbles

  • Chapter
  • First Online:

Abstract

Detrital thermochronology data from cobbles, either within modern sediments or basin stratigraphy, can provide excellent constraints on the exhumation history of the adjacent orogen or hinterland. This approach is especially powerful if multiple techniques are applied to each cobble. With cobbles, all grains have a common thermal history; thus, for apatite fission-track (AFT) thermochronology, ages are better defined than those for single-grains, and track-length measurements permit meaningful thermal models. Well-constrained basin stratigraphy is required to generate lag-time plots that combined with thermal modelling may constrain the rate and timing of cooling/exhumation events in the orogen, as well as later basin inversion. Limitations in this approach include the number of cobbles that need to be analysed to provide a representative sampling of the source region and to capture the pre-depositional exhumation history. Caveats also apply regarding closure temperature assumptions, integrated exhumation rates, time from erosion to basin deposition, variable provenance of the cobbles, paleo-relief in the source area, as well as burial-related partial annealing. Two examples illustrate this detrital cobble approach applied to basin stratigraphy. On the southern flank of the Pyrenean orogen, cobble AFT thermochronology from Eocene-to-Oligocene syntectonic conglomerates records three episodes of cooling/exhumation in the hinterland due to progressive movement of thrust sheets, followed by burial and Late Miocene re-excavation. The cobble thermochronologic record complements in-situ thermochronologic data from the orogen. South of the European Alps, thermochronology on conglomeratic clasts in the Gonfolite basin record exhumation in the Bergell region of the Central Alps. There, a stationary peak at ~30 Ma records the emplacement of plutonic and volcanic rocks, whereas a moving peak starting at ~25 Ma that decreases in age up-section records exhumation-related cooling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amidon W, Burbank D, Gehrels G (2005a) Construction of detrital mineral populations: insights from mixing of U–Pb zircon ages in Himalayan rivers. Basin Res 17:463–485

    Article  Google Scholar 

  • Amidon W, Burbank D, Gehrels G (2005b) U–Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth Planet Sci Lett 235:244–260

    Article  Google Scholar 

  • Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216:249–270

    Article  Google Scholar 

  • Anfinson OA, Malusà MG, Ottria G, Dafov LN, Stockli DF (2016) Tracking coarse-grained gravity flows by LASS-ICP-MS depth-profiling of detrital zircon (Aveto Formation, Adriatic foredeep, Italy). Mar Petrol Geol 77:1163–1176

    Article  Google Scholar 

  • Baldwin SL, Lister GS (1998) Thermochronology of the South Cyclades shear zone, Ios, Greece; effects of ductile shear in the argon partial retention zone. J Geophys Res 103:7315–7336

    Article  Google Scholar 

  • Baldwin SL, Harrison TM, Burke K (1986) Fission track evidence for the source of Scotland District sediments, Barbados and implications for post-Eocene tectonics of the southern Caribbean. Tectonics 5:457–468

    Article  Google Scholar 

  • Barso D (2007) Analisis de la procedencia de los conglomerados sinorogenicos de La Pobla de Segur (Lerida) y su relacion con la evolucion tectonica de los Pirineos centro-meridionales durante el Eoceno medio-Oligoceno. University of Barcelona, p 209

    Google Scholar 

  • Beamud E, Garcés M, Cabrera L, Muñoz JA, Almar Y (2003) A new middle to late Eocene continental chronostratigraphy from NE Spain. Earth Planet Sci Lett 216:501–514

    Article  Google Scholar 

  • Beamud E, Muñoz JA, Fitzgerald PG, Baldwin SL, Garcés M, Cabrera L, Metcalf JR (2011) Magnetostratigraphy and detrital apatite fission track thermochronology in syntectonic conglomerates: constraints on the exhumation of the South-Central Pyrenees. Basin Res 23:309–331

    Article  Google Scholar 

  • Beaumont C, Muñoz JA, Hamilton J, Fullsack P (2000) Factors controlling the Alpine evolution of the central Pyrenees from a comparison of observations and geodynamical models. J Geophys Res 105:8121–8145

    Article  Google Scholar 

  • Bernet M (2018) Exhumation studies of mountain belts based on detrital fission-track analysis on sand and sandstones. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 15)

    Google Scholar 

  • Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58(1):205–237

    Article  Google Scholar 

  • Bernet M, Spiegel C (2004) Introduction: detrital thermochronology. In: Bernet M, Spiegel C (eds) Detrital thermochronology—provenance analysis, exhumation, and landscape evolution of mountain belts. Geol S Am S 378:1–6

    Google Scholar 

  • Bernet M, Zattin M, Garver JI, Brandon MT, Vance JA (2001) Steady-state exhumation of the European Alps. Geology 29:35–38

    Article  Google Scholar 

  • Bernet M, Brandon M, Garver J, Molitor B (2004) Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps. Geol Soc Am Spec 378:25–36

    Google Scholar 

  • Bernoulli D, Giger M, Müller DW, Ziegler URF (1993) Sr-isotope-stratigraphy of the Gonfolite Lombarda Group (“South-Alpine Molasse”, northern Italy) and radiometric constraints for its age of deposition. Eclogae Geol Helv 86:751–767

    Google Scholar 

  • Brandon MT (1996) Probability density plot for fission-track grain-age samples. Radiat Meas 26:663–676

    Article  Google Scholar 

  • Brandon MT, Vance JA (1992) Tectonic evolution of the Cenozoic Olympic subduction complex, Washington State, as deduced from fission track ages for detrital zircons. Am J Sci 292:565–636

    Article  Google Scholar 

  • Braun J, van der Beek P, Batt G (2006) Quantitative thermochronology: numerical methods for the interpretation of thermochronological data. Cambridge University Press, Cambridge

    Google Scholar 

  • Brown RW (1991) Backstacking apatite fission-track “stratigraphy”: a method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology 19(1):74–77

    Article  Google Scholar 

  • Brügel A, Dunkl I, Frisch W, Kuhlemann J, Balogh K (2004) Geochemistry and geochronology of gneiss pebbles from foreland molasse conglomerates: geodynamic and paleogeographic implications for the Oligo-Miocene evolution of the Eastern Alps. J Geol 111:543–563

    Article  Google Scholar 

  • Burbank D, Puigdefabregas C, Muñoz JA (1992) The chronology of the Eocene tectonic and stratigraphic development of the eastern Pyrenean foreland basin, northeast Spain. Geol Soc Am Bull 104:1101–1120

    Article  Google Scholar 

  • Burnham A, Sweeney J (1989) A chemical kinetic model of vitrinite maturation and reflectance. Geochim Cosmochim Acta 53:2649–2657

    Article  Google Scholar 

  • Carrapa B (2009) Tracing exhumation and orogenic wedge dynamics in the European Alps with detrital thermochronology. Geology 37:1127–1130

    Article  Google Scholar 

  • Carrapa B, Di Giulio A (2001) The sedimentary record of the exhumation of a granitic intrusion into a collisional setting: the lower Gonfolite Group, Southern Alps, Italy. Sed Geo 139:217–228

    Article  Google Scholar 

  • Carrapa B, Wijbrans JR, Bertotti G (2004) Detecting provenance variations and cooling patterns within the western Alpine orogen through 40Ar/39Ar geochronology on detrital sediments: the tertiary piedmont basin, NW Italy. Geol Soc Am Spec 378:67–103

    Google Scholar 

  • Carter A (2018) Thermochronology on sand and sandstones for stratigraphic and provenance studies. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 14)

    Google Scholar 

  • Cawood PA, Nemchin A (2001) Paleogeographic development of the East Laurentian margin: constraints from U–Pb dating of detrital zircon in the Newfoundlan Appalachians. Geol Soc Am Bull 113:1234–1246

    Article  Google Scholar 

  • Cerveny PF, Naeser ND, Zeitler PK, Naeser CW, Johnson NM (1988) History of uplift and relief of the Himalaya during the past 18 million years: evidence from fission-track ages of detrital zircons from sandstones of the Siwalik Group. New perspectives in basin analysis. Springer, New York, pp 43–61

    Chapter  Google Scholar 

  • Coney PJ, Muñoz JA, McClay K, Evenchick CA (1996) Syn-tectonic burial and post-tectonic exhumation of an active foreland thrust belt, southern Pyrenees, Spain. J Geol Soc 153:9–16

    Article  Google Scholar 

  • Costa E, Garcés M, López-Blanco M, Beamud E, Gómez-Paccard M, Larrasoaña JC (2010) Closing and continentalization of the South Pyrenean foreland basin (NE Spain): magnetochronological constraints. Basin Res 22:904–917

    Google Scholar 

  • Davidson C, Rosenberg C, Schmid SM (1996) Symmagmatic folding of the base of the Bergell pluton, Central Alps. Tectonophysics 265(3):213–238

    Article  Google Scholar 

  • DeCelles PG (1988) Lithologic provenance modeling applied to the Late Cretaceous synorogenic Echo Canyon Conglomerate, Utah: a case of multiple source areas. Geology 16:1039–1043

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperatures in cooling geochronological and petrological systems. Contrib Mineral Petr 40:259–274

    Article  Google Scholar 

  • Dunkl I, Székely B (2002) Component analysis with visualization of fitting—PopShare, a Windows program for data analysis. In: Goldschmidt conference abstracts 2002. Geochim Cosmochim Acta 66/A:201

    Google Scholar 

  • Dunkl I, Frisch W, Kuhlemann J, Brügel A (2009) Pebble population dating as an additional tool for provenance studies-examples from the Eastern Alps. Geol Soc Spec Publ 324:125–140

    Article  Google Scholar 

  • Enkelmann E, Koons PO, Pavlis TL, Hallet B, Barker A, Elliott J, Ridgway KD (2015) Cooperation among tectonic and surface processes in the St. Elias Range, earth’s highest coastal mountains. Geophysl Res Lett 42:5838–5846

    Article  Google Scholar 

  • Epstein AG, Epstein JB, Harris LD (1977) Conodont color alteration—an index to organic metamorphism. Boulder, Colorado, pp 1–27

    Google Scholar 

  • Falkowski S, Enkelmann E, Drost K, Pfänder JA, Stübner K, Ehlers TA (2016) Cooling history of the St. Elias syntaxis, southeast Alaska, revealed by geo-and thermochronology of cobble-sized glacial detritus. Tectonics 8:359–378

    Google Scholar 

  • Fellin MG, Sciunnach D, Tunesi A, Andò S, Garzanti E, Vezzoli G (2005) Provenance of detrital apatites from the upper Gonfolite Lombarda Group (Miocene, NW Italy). GeoActa 4:43–56

    Google Scholar 

  • Filleaudeau PY, Mouthereau F, Pik R (2012) Thermo-tectonic evolution of the south-central Pyrenees from rifting to orogeny: insights from detrital zircon U/Pb and (U–Th)/He thermochronometry. Basin Res 24:401–417

    Article  Google Scholar 

  • Fillon C, van der Beek P (2012) Post-orogenic evolution of the southern Pyrenees: constraints from inverse thermo-kinematic modelling of low-temperature thermochronology data. Basin Res 24:418–436

    Article  Google Scholar 

  • Fillion C, Gautheron C, van der Beek P (2013) Oligocene-Miocene burial and exhumation of the Southern Pyrenean foreland quantified by low-temperature thermochronology. J Geol Soc 107:67–77

    Article  Google Scholar 

  • Fitzgerald PG, Muñoz JA, Coney PJ, Baldwin SL (1999) Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of collisional orogens. Earth Planet Sci Lett 173:157–170

    Article  Google Scholar 

  • Fox M, Reverman R, Herman F, Fellin MG, Sternai P, Willett SD (2014) Rock uplift and erosion rate history of the Bergell intrusion from the inversion of low temperature thermochronometric data. Geochem, Geophy, Geosyst 15(4):1235–1257

    Article  Google Scholar 

  • Galbraith RF (2005) Statistics for fission track analysis, 1st edn. Chapman and Hall/CRC, Boca Raton, Florida

    Book  Google Scholar 

  • Galbraith RF, Green PF (1990) Estimating the component ages in a finite mixture. Nucl Tracks Rad Meas 17:197–206

    Article  Google Scholar 

  • Gallagher K (2012) Transdimensional inverse thermal history modeling for quantitative thermochronology. J Geophys Res 117(B2)

    Article  Google Scholar 

  • Garver JI, Brandon MT, Roden-Tice MK, Kamp PJJ (1999) Exhumation history of orogenic highlands determined by detrital fission track thermochronology. Geol Soc Spec Publ 154:283–304

    Article  Google Scholar 

  • Garzanti E, Malusà MG (2008) The oligocene alps: domal unroofing and drainage development during early orogenic growth. Earth Planet Sci Lett 268:487–500

    Article  Google Scholar 

  • Gehrels G (2014) Detrital zircon U–Pb geochronology applied to tectonics. Ann Rev Earth Pl Sci 42:127–149

    Article  Google Scholar 

  • Gelati R, Napolitano A, Valdisturlo A (1988) La “Gonfolite Lombarda”: stratigrafia e significato nell’evoluzione del margine sudalpino. Riv It Paleont Strat 94:285–332

    Google Scholar 

  • Gibson M, Sinclair H, Lynn G, Stuart F (2007) Late-to post-orogenic exhumation of the Central Pyrenees revealed through combined thermochronological data and modelling. Basin Res 19:323–334

    Article  Google Scholar 

  • Giger M, Hurford AJ (1989) Tertiary intrusives of the Central Alps: their Tertiary uplift, erosion, redeposition and burial in the south-alpine foreland. Eclogae Geol Helv 82:857–866

    Google Scholar 

  • Gleadow AJW, Fitzgerald PG (1987) Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet Sci Lett 82(1):1–14

    Article  Google Scholar 

  • Gleadow AJW, Brown RW (2000) Fission track thermochronology and the long term denudational response to tectonics. In: Summerfield MA (ed) Geomorphology and global tectonics. Willey, New York, pp 57–75

    Google Scholar 

  • Hurford AJ (1986) Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib Mineral Petr 92:413–427

    Article  Google Scholar 

  • Hurford AJ, Carter A (1991) The role of fission track dating in discrimination of provenance. Geol Soc Spec Publ 57:67–78

    Article  Google Scholar 

  • Hurford AJ, Fitch FJ, Clarke A (1984) Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating. Geol Mag 121:269–277

    Article  Google Scholar 

  • Jäger E (1967) Die Bedeutung der Biotit-Alterswerte. In: Jäger E, Niggli E, Wenk E (eds) Rb-Sr Alterbestmmungen an Glimmern der Zentralalpen Beitr. Geol Kaarte Schweiz, NF, pp 28–31

    Google Scholar 

  • Jammes S, Manatschal G, Lavier L, Masini E (2009) Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: example of the western Pyrenees. Tectonics 28:TC4012

    Article  Google Scholar 

  • Jammes S, Huismans R, Muñoz J (2014) Lateral variation in structural style of mountain building: controls of rheological and rift inheritance. Terra Nova 26:201–207

    Article  Google Scholar 

  • Jones MA, Heller PL, Roca E, Garcés M, Cabrera L (2004) Time lag of syntectonic sedimentation across an alluvial basin: theory and example from the Ebro Basin, Spain. Basin Res 16:489–506

    Article  Google Scholar 

  • Ketcham RA (2005) Forward and inverse modeling of low temperature thermochronometry data. Rev Mineral Geochem 58:275–314

    Article  Google Scholar 

  • Ketcham R (2018) Fission track annealing: from geologic observations to thermal history modeling. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 3)

    Google Scholar 

  • Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission track annealing kinetics III: extrapolation to geological time scales. Am Mineral 84:1235–1255

    Article  Google Scholar 

  • Ketcham R, Carter A, Donelick R, Barbarand J, Hurford A (2007) Improved modeling of fission-track annealing in apatite. Am Mineralt 92:799

    Article  Google Scholar 

  • Lagabrielle Y, Labaume P, De Saint Blanquat M (2010) Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies. Tectonics 29:TC4012

    Article  Google Scholar 

  • Liati A, Gebauer D, Fanning M (2000) U–Pb SHRIMP dating of zircon from the Novate granite (Bergell, Central Alps): evidence for Oligocene-Miocene magmatism, Jurassic/Cretaceous continental rifting and opening of the Valais trough. Schweiz Mineral Petr Mitt 80:305–316

    Google Scholar 

  • Lovera OM, Grove M, Harrison TM (2002) Systematic analysis of K-feldspar 40Ar/39Ar step heating results II: Relevance of laboratory argon diffusion properties to nature. Geochim Cosmochim Acta 66:1237–1255

    Article  Google Scholar 

  • Mahéo G, Gautheron C, Leloup PH, Fox M, Tassant-Got L, Douville E (2013) Neogene exhumation history of the Bergell massif (southeast Central Alps). Terra Nova 25:110–118

    Article  Google Scholar 

  • Malusà MG (2018) A guide for interpreting complex detrital age patterns in stratigraphic sequences. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 16)

    Google Scholar 

  • Malusà MG, Fitzgerald PG (2018a) From cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 8)

    Google Scholar 

  • Malusà MG, Fitzgerald PG (2018b) Application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 10)

    Google Scholar 

  • Malusà MG, Garzanti E (2018) The sedimentology of detrital thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 7)

    Google Scholar 

  • Malusà MG, Villa IM, Vezzoli G, Garzanti E (2011) Detrital geochronology of unroofing magmatic complexes and the slow erosion of oligocene volcanoes in the Alps. Earth Planet Sci Lett 301:324–336

    Article  Google Scholar 

  • Malusà MG, Carter A, Limoncelli M, Villa IM, Garzanti E (2013) Bias in detrital zircon geochronology and thermochronometry. Chem Geol 359:90–107

    Article  Google Scholar 

  • Malusà MG, Faccenna C, Baldwin SL, Fitzgerald PG, Rossetti F, Balestrieri ML, Ellero A, Ottria G, Piromallo C (2015) Contrasting styles of (U) HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochem Geophys Geosyst 16(6):1786–1824

    Article  Google Scholar 

  • Malusà MG, Anfinson OA, Dafov L, Stockli D (2016a) Tracking Adria indentation beneath the Alps by detrital zircon U–Pb geochronology: implications for the oligocene-miocene dynamics of the adriatic microplate. Geology 44:155–158

    Article  Google Scholar 

  • Malusà MG, Resentini A, Garzanti E (2016b) Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res 31:1–19

    Article  Google Scholar 

  • Mancktelow NS, Grasemann B (1997) Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics 270(3):167–195

    Article  Google Scholar 

  • Meigs AJ, Vergés J, Burbank DW (1996) Ten-million-year history of a thrust sheet. Geol Soc Am Bull 108:1608

    Article  Google Scholar 

  • Mellere D (1993) Thrust-generated, back-fill stacking of alluvial fan sequences, south central Pyrenees, Spain (La Pobla de Seguar conglomerates). IAS Spec Publ 20:259–276

    Google Scholar 

  • Metcalf JR, Fitzgerald PG, Baldwin SL, Muñoz JA (2009) Thermochronology in a convergent orogen: constraints on thrust faulting and exhumation from the Maladeta Pluton in the Axial Zone of the Central Pyrenees. Earth Planet Sci Lett 287:488–503

    Article  Google Scholar 

  • Morris RG, Sinclair HD, Yelland AJ (1998) Exhumation of the Pyrenean orogen: implications for sediment discharge. Basin Res 10:69–85

    Article  Google Scholar 

  • Muñoz JA (1992) Evolution of a continental collision belt: ECORS Pyrenees crustal balanced cross-section. In: McClay K (ed) Thrust tectonics. Chapman and Hall, London, pp 235–246

    Chapter  Google Scholar 

  • Muñoz JA (2002) The Pyrenees Alpine tectonics; I, The Alpine system north of the Betic Cordillera. In: Gibbons W, Moreno T (eds) The geology of Spain. The Geological Society, London, p 649

    Google Scholar 

  • Muñoz JA, Coney PJ, McClay KR, Evenchick CA (1997) Reply to discussion on syntectonic burial and post-tectonic exhumation of the southern Pyrenees foreland fold-thrust belt. J Geol Soc 154:361–365

    Article  Google Scholar 

  • Oberli F, Meier M, Berger A, Rosenberg CL, Gieré R (2004) U-Th-Pb and 230Th/238U disequilibrium isotope systematics: precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochim Cosmochim Acta 68:2543–2560

    Article  Google Scholar 

  • Pérez-Rivarés FJ, Garcés M, Arenas C, Pardo G (2004) Magnetostratigraphy of the miocene continental deposits of the Montes de Castejón (central Ebro Basin, Spain): geochronological and paleoenvironmental implications. Geol Acta 2:221–234

    Google Scholar 

  • Puigdefàbregas C, Muñoz JA, Marzo M (1986) Thrust belt development in the Eastern Pyrenees and related depositional sequences in the southern foreland basin. In: Allen PA, Homewood P (eds) Foreland basins. IAS Spec Publ, pp 229–246

    Google Scholar 

  • Rahl JM, Ehlers TA, van der Pluijm BA (2007) Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth Planet Sci Lett 256:147–161

    Article  Google Scholar 

  • Rahl JM, Haines SH, van der Pluijm BA (2011) Links between orogenic wedge deformation and erosional exhumation: evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth Planet Sci Lett 307:180–190

    Article  Google Scholar 

  • Rahn MK (2005) Apatite fission track ages from the Adula nappe: late stage exhumation and relief evolution. Schweiz Mineral Petr Mitt 85:233–245

    Google Scholar 

  • Rahn M, Brandon MT, Batt G, Garver JI (2004) A zero-damage model for fission-track annealing in zircon. Am Mineral 89:473–484

    Article  Google Scholar 

  • Reiners PW (2007) Thermochronologic approaches to paleotopography. Rev Mineral Geochem 66:243–267

    Article  Google Scholar 

  • Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Ann Rev Earth Planet Sci 34:419–466

    Article  Google Scholar 

  • Resentini A, Malusà MG (2012) Sediment budgets by detrital apatite fission-track dating (Rivers Dora Baltea and Arc, Western Alps). Geol Soc Am Spec 487:125–140

    Google Scholar 

  • Riba O, Reguant S, Villena J (1983) Ensayo de síntesis estratigráfica y evolutiva de la cuenca terciaria del Ebro. Geol España 2:131–159

    Google Scholar 

  • Ring U, Brandon MT, Willet SD, Lister GS (1999) Exhumation processes. Geol Soc Spec Publ 154:1–27

    Article  Google Scholar 

  • Roca E, Muñoz JA, Ferrer O, Ellouz N (2011) The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: Constraints from the MARCONI deep seismic reflection survey. Tectonics 30(2)

    Article  Google Scholar 

  • Roest WR, Srivastava SP (1991) Kinematics of the plate boundaries between Eurasia, Iberia and Africa in the North Atlantic from the late Cretaceous to the present. Geology 19:613–616

    Article  Google Scholar 

  • Rosenbaum G, Lister GS, Duboz C (2002) Relative motions of Africa, Iberia and Europe during Alpine Orogeny. Tectonophysics 359:117–129

    Article  Google Scholar 

  • Schneider DA, Issler DR (2018) Application of low temperature thermochronology to hydrocarbon exploration. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 18)

    Google Scholar 

  • Sinclair H, Gibson M, Naylor M, Morris R (2005) Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. Am J Sci 305:369

    Article  Google Scholar 

  • Spiegel C, Kuhlemann J, Dunkl I, Frisch W (2001) Paleogeography and catchment evolution in a mobile orogenic belt: the Central Alps in Oligo-Miocene times. Tectonophysics 341:33–47

    Article  Google Scholar 

  • Spiegel C, Siebel W, Kuhlemann J, Frisch W (2004) Toward a comprehensive provenance analysis: a multi-method approach and its implications for the evolution of the central Alps. Geol Soc Am Spec 378:37–50

    Google Scholar 

  • Spotila J (2005) Applications of low-temperature thermochronometry to quantification of recent exhumation in mountain belts. Rev Mineral Geochem 58:449–466

    Article  Google Scholar 

  • Stewart RJ, Brandon MT (2004) Detrital zircon fission-track ages for the “Hoh Formation”: implications for Late Cenozoic evolution of the Cascadia subduction wedge. Geol Soc Am Bull 116:60–75

    Article  Google Scholar 

  • Stock JD, Montgomery DR (1996) Estimating palaeo-relief from detrital mineral age ranges. Basin Res 8:317–327

    Article  Google Scholar 

  • Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I (2014) Formation and deformation of hyperextended rift systems: insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33:1239–1276

    Article  Google Scholar 

  • van der Beek P, Robert X, Mugnier JL, Bernet M, Huyghe P, Labrin E (2006) Late Miocene–recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission-track thermochronology of Siwalik sediments, Nepal. Basin Res 18:413–434

    Article  Google Scholar 

  • Vergés J, Muñoz JA (1990) Thrust sequences in the southern central Pyrenees. Bull Soc Geol Fr 8:265–271

    Article  Google Scholar 

  • Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224:441–451

    Article  Google Scholar 

  • Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312:190–194

    Article  Google Scholar 

  • Villa IM, von Blanckenburg F (1991) A hornblende 39Ar-40Ar age traverse of the Bregaglia tonalite (southeast Central Alps). Schweiz Mineral Petr Mitt 71:73–87

    Google Scholar 

  • Vincent SJ (2001) The Sis palaeovalley: a record of proximal fluvial sedimentation and drainage basin development in response to Pyrenean mountain building. Sedimentology 48:1235–1276

    Article  Google Scholar 

  • von Blanckenburg F (1992) Combined high-precision chronometry and geochemical tracing using accessory minerals: applied to the Central-Alpine Bergell intrusion (central Europe). Chem Geol 100:19–40

    Article  Google Scholar 

  • Wagner GA, Reimer GM, Jäger E (1977) Cooling ages derived by apatite fission-track, mica Rb–Sr and K–Ar dating: the uplift and cooling history of the Central Alps. Mem Ist Geol Min Padova 30:1–27

    Google Scholar 

  • Wagner G, Miller DS, Jäger E (1979) Fission track ages on apatite of Bergell rocks from central Alps and Bergell boulders in Oligocene sediments. Earth Planet Sci Lett 102:395–412

    Google Scholar 

  • Wolf RA, Farley KA, Kass DM (1998) Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chem Geol 148:105–114

    Article  Google Scholar 

  • Yelland A (1990) Fission track thermotectonics in the Pyrenean orogen. Nucl Tracks Rad Meas 17:293–299

    Article  Google Scholar 

Download references

Acknowledgements

Fitzgerald acknowledges support from grants NSF grants EAR95-06454 and EAR05-38216 that initiated this work on detrital cobble thermochronology. Fitzgerald also acknowledges Jarg Pettinga and the Erskine Program at the University of Canterbury where much of this paper was written. Malusà thanks E. Garzanti and I.M. Villa for insightful discussions on the Bergell-Gonfolite system. Muñoz acknowledges support from the SALTECRES project (CGL2014-54118-C2-1-R MINECO/FEDER, UE) as well as the Grup de Recerca de Geodinàmica i Anàlisi de Conques (2014SRG467). This paper has benefitted from discussions with Suzanne Baldwin. Thorough and thoughtful reviews by Jeff Rahl and Peter van der Beek greatly improved this paper, and we acknowledge their suggestions and comments with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Fitzgerald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fitzgerald, P.G., Malusà, M.G., Muñoz, J.A. (2019). Detrital Thermochronology Using Conglomerates and Cobbles. In: Malusà, M., Fitzgerald, P. (eds) Fission-Track Thermochronology and its Application to Geology. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-89421-8_17

Download citation

Publish with us

Policies and ethics