Skip to main content

A Guide for Interpreting Complex Detrital Age Patterns in Stratigraphic Sequences

  • Chapter
  • First Online:
Fission-Track Thermochronology and its Application to Geology

Abstract

Thermochronologic age trends in sedimentary rocks collected through a stratigraphic sequence provide invaluable insights into the provenance and exhumation of the sediment sources. However, a correct recognition of these age trends may be hindered by the complexity of many detrital thermochronology datasets. Such a complexity is largely determined by the complexity of the thermochronology of eroded bedrock that may record, depending on the thermochronologic system under consideration, cooling during exhumation, episodes of magmatic crystallisation, metamorphic mineral growth and/or late-stage mineral alteration in single or multiple source areas. This chapter illustrates how different geologic processes produce different patterns of thermochronologic ages in detritus. These basic age patterns are variously combined in the stratigraphic record and provide a key for the geologic interpretation of complex detrital thermochronology datasets. Grain-age distributions in sedimentary rocks may include stationary age peaks and moving age peaks. Stationary age peaks provide no direct constraint on exhumation, as they relate to episodes of magmatic crystallisation, metamorphic growth or thermal relaxation in the source rocks. Moving age peaks are generally set during exhumation and can be used to investigate the long-term erosional evolution of mountain belts using the lag-time approach. Post-depositional annealing due to burial produces age peaks that become progressively younger down section. The appearance of additional older age peaks moving up section may provide evidence for a major provenance change. When interpreting detrital thermochronologic age trends, the potential bias introduced by natural processes in the source-to-sink environment and inappropriate procedures of sampling and laboratory processing should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216:249–270

    Article  Google Scholar 

  • Andersen T, Kristoffersen M, Elburg MA (2017) Visualizing, interpreting and comparing detrital zircon age and Hf isotope data in basin analysis—a graphical approach. Basin Res. https://doi.org/10.1111/bre.12245

    Article  Google Scholar 

  • Asti R, Malusà MG, Faccenna C (2018) Supradetachment basin evolution unraveled by detrital apatite fission track analysis: the Gediz Graben (Menderes Massif, Western Turkey). Basin Res 30:502–521

    Article  Google Scholar 

  • Baldwin SL (2015) Highlights and breakthroughs. Zircon dissolution and growth during metamorphism. Am Mineral 100(5–6):1019–1020

    Article  Google Scholar 

  • Baldwin SL, Fitzgerald PG, Malusà MG (2018) Chapter 13. Crustal exhumation of plutonic and metamorphic rocks: constraints from fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Bernet M (2018) Chapter 15. Exhumation studies of mountain belts based on detrital fission-track analysis on sand and sandstones. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58(1):205–237

    Google Scholar 

  • Bernet M, Spiegel C (eds) (2004) Detrital thermochronology. Geol S Am S 378

    Google Scholar 

  • Bernet M, Brandon MT, Garver JI, Molitor B (2004) Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps. Geol S Am S 378:25–36

    Google Scholar 

  • Brandon MT (1996) Probability density plot for fission-track grain-age samples. Radiat Meas 26:663–676

    Google Scholar 

  • Braun J (2016) Strong imprint of past orogenic events on the thermochronological record. Tectonophysics 683:325–332

    Article  Google Scholar 

  • Braun J, van der Beek P, Batt G (2006) Quantitative thermochronology: numerical methods for the interpretation of thermochronological data. Cambridge University Press, Cambridge

    Google Scholar 

  • Calk LC, Naeser CW (1973) The thermal effect of a basalt intrusion on fission tracks in quartz monzonite. J Geol 81(2):189–198

    Article  Google Scholar 

  • Carrapa B (2009) Tracing exhumation and orogenic wedge dynamics in the European Alps with detrital thermochronology. Geology 37:1127–1130

    Article  Google Scholar 

  • Carrapa B, Wijbrans J, Bertotti G (2003) Episodic exhumation in the Western Alps. Geology 31(7):601–604

    Article  Google Scholar 

  • Carter A (2018) Chapter 14. Thermochronology on sand and sandstones for stratigraphic and provenance studies. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Carter A, Moss SJ (1999) Combined detrital zircon fission-track and U–Pb dating: a new approach to understanding hinterland evolution. Geology 27:235–238

    Article  Google Scholar 

  • Cawood PA, Nemchin AA, Freeman M, Sircombe K (2003) Linking source and sedimentary basin: detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth Planet Sci Lett 210:259–268

    Article  Google Scholar 

  • Challandes N, Marquer D, Villa IM (2008) P-T-t modelling, fluid circulation, and 39Ar-40Ar and Rb-Sr mica ages in the Aar Massif shear zones (Swiss Alps). Swiss J Geosci 101:269–288

    Article  Google Scholar 

  • Danišík M (2018) Chapter 5. Integration of fission-track thermochronology with other geochronologic methods on single crystals. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Dodson MH, Compston W, Williams IS, Wilson JF (1988) A search for ancient detrital zircons in Zimbabwean sediments. J Geol Soc London 145:977–983

    Article  Google Scholar 

  • Enkelmann E, Garver JI, Pavlis TL (2008) Rapid exhumation of ice-covered rocks of the Chugach–St. Elias orogen, Southeast Alaska. Geology 36:915–918

    Article  Google Scholar 

  • Fitzgerald PG, Malusà MG, Muñoz JA (2018) Chapter 17. Detrital thermochronology using conglomerates and cobbles. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Galbraith RF (1990) The radial plot: graphical assessment of spread in ages. Nucl Tracks Radiat Meas 17:207–214

    Article  Google Scholar 

  • Garver JI, Kamp PJJ (2002) Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the Southern Alps, New Zealand. Tectonophysics 349:203–219

    Article  Google Scholar 

  • Garver JI, Brandon MT, Roden-Tice MK, Kamp PJJ (1999) Exhumation history of orogenic highlands determined by detrital fission track thermochronology. Geol Soc Spec Publ 154:283–304

    Article  Google Scholar 

  • Garzanti E, Malusà MG (2008) The Oligocene Alps: domal unroofing and drainage development during early orogenic growth. Earth Planet Sci Lett 268:487–500

    Article  Google Scholar 

  • Giger M (1990) Geologische und Petrographische Studien an Geröllen und Sedimenten der Gonfolite Lombarda Gruppe (Südschweiz und Norditalien) und ihr Vergleich mit dem Alpinen Hinterland. PhD Thesis, University of Bern

    Google Scholar 

  • Gleadow AJW (1990) Fission track thermochronology—reconstructing the thermal and tectonic evolution of the crust. In: Pacific Rim Congress III, Austr Inst Min Met, Gold Coast, Queensland, pp 15–21

    Google Scholar 

  • Gleadow AJW, Hurford AJ, Quaife RD (1976) Fission track dating of zircon: improved etching techniques. Earth Planet Sci Lett 33:273–276

    Article  Google Scholar 

  • Glodny J, Kühn A, Austrheim H (2008) Diffusion versus recrystallization processes in Rb–Sr geochronology: isotopic relics in eclogite facies rocks, Western Gneiss Region, Norway. Geochim Cosmochim Acta 72:506–525

    Article  Google Scholar 

  • Glotzbach C, Bernet M, van der Beek P (2011) Detrital thermochronology records changing source areas and steady exhumation in the Western European Alps. Geology 39:239–242

    Article  Google Scholar 

  • Gombosi DJ, Garver JI, Baldwin SL (2014) On the development of electron microprobe zircon fission-track geochronology. Chem Geol 363:312–321

    Article  Google Scholar 

  • Harrison TM, McDougall I (1980) Investigations of an intrusive contact, northwest Nelson, New Zealand—I. Thermal, chronological and isotopic constraints. Geochim Cosmochim Acta 44(12):1985–2003

    Article  Google Scholar 

  • Herman F, Seward D, Valla PG, Carter A, Kohn B, Willett SD, Ehlers TA (2013) Worldwide acceleration of mountain erosion under a cooling climate. Nature 504:423–426

    Article  Google Scholar 

  • Jasra A, Stephens DA, Gallagher K, Holmes CC (2006) Analysis of geochronological data with measurement error using Bayesian mixtures. Math Geol 38:269–300

    Article  Google Scholar 

  • Jourdan S, Bernet M, Tricart P, Hardwick E, Paquette JL, Guillot S, Dumont T, Schwartz S (2013) Short-lived fast erosional exhumation of the internal Western Alps during the late Early Oligocene: constraints from geo-thermochronology of pro- and retro-side foreland basin sediments. Lithosphere 5:211–225

    Article  Google Scholar 

  • Kasuya M, Naeser CW (1988) The effect of α-damage on fission-track annealing in zircon. Nucl Tracks Radiat Meas 14:477–480

    Article  Google Scholar 

  • Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of metamorphic zircon. Am Mineral 100(4):897–908

    Article  Google Scholar 

  • Kohn B, Chung L, Gleadow A (2018) Chapter 2. Fission-track analysis: field collection, sample preparation and data acquisition. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Komar PD (2007) The entrainment, transport and sorting of heavy minerals by waves and currents. Dev Sedimentol 58:3–48

    Article  Google Scholar 

  • Malusà MG, Fitzgerald PG (2018a) Chapter 8. From cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Malusà MG, Fitzgerald PG (2018b) Chapter 10. Application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Malusà MG, Garzanti E (2018) Chapter 7. The sedimentology of detrital thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Malusà MG, Villa IM, Vezzoli G, Garzanti E (2011) Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth Planet Sci Lett 301:324–336

    Article  Google Scholar 

  • Malusà MG et al. (2012) Geochronology of detrital minerals: single-grain petrology, stratigraphy and the slow erosion of Oligocene Alps. In: Abstracts of the 13th international conference on thermochronology, Guilin, China, 24–28 Aug 2012

    Google Scholar 

  • Malusà MG, Carter A, Limoncelli M, Villa IM, Garzanti E (2013) Bias in detrital zircon geochronology and thermochronometry. Chem Geol 359:90–107

    Article  Google Scholar 

  • Malusà MG, Resentini A, Garzanti E (2016a) Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res 31:1–19

    Article  Google Scholar 

  • Malusà MG, Danišík M, Kuhlemann J (2016b) Tracking the Adriatic-slab travel beneath the Tethyan margin of Corsica–Sardinia by low-temperature thermochronometry. Gondwana Res 31:135–149

    Article  Google Scholar 

  • Malusà MG, Wang J, Garzanti E, Liu ZC, Villa IM, Wittmann H (2017) Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: implications for provenance discrimination and the lag-time approach to detrital thermochronology. Lithos 290–291:48–59

    Article  Google Scholar 

  • Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol 96(2):212–224

    Article  Google Scholar 

  • Montario MJ, Garver JI (2009) The thermal evolution of the Grenville Terrane revealed through U-Pb and fission-track analysis of detrital zircon from Cambro-Ordovician quartz arenites of the Potsdam and Galway Formations. J Geol 117(6):595–614

    Article  Google Scholar 

  • Ohishi S, Hasebe N (2012) Observation of fission-tracks in zircons by atomic force microscope. Radiat Meas 47(7):548–556

    Article  Google Scholar 

  • Rahl JM, Ehlers TA, van der Pluijm BA (2007) Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth Planet Sci Lett 256:147–161

    Article  Google Scholar 

  • Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466

    Article  Google Scholar 

  • Reiners PW, Farley KA (2001) Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth Planet Sci Lett 188:413–420

    Article  Google Scholar 

  • Resentini A, Malusà MG (2012) Sediment budgets by detrital apatite fission-track dating (Rivers Dora Baltea and Arc, Western Alps). Geol S Am S 487:125–140

    Google Scholar 

  • Ruhl KW, Hodges KV (2005) The use of detrital mineral cooling ages to evaluate steady state assumptions in active orogens: an example from the central Nepalese Himalaya. Tectonics 24(4)

    Article  Google Scholar 

  • Ruiz G, Seward D, Winkler W (2004) Detrital thermochronology–a new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador. Basin Res 16:413–430

    Article  Google Scholar 

  • Sambridge MS, Compston W (1994) Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet Sci Lett 128:373–390

    Article  Google Scholar 

  • Schuiling RD, DeMeijer RJ, Riezebos HJ, Scholten MJ (1985) Grain size distribution of different minerals in a sediment as a function of their specific density. Geol Mijnbouw 64:199–203

    Google Scholar 

  • Sircombe KN, Stern RA (2002) An investigation of artificial biasing in detrital zircon U–Pb geochronology due to magnetic separation in sample preparation. Geochim Cosmochim Acta 66:2379–2397

    Article  Google Scholar 

  • Sláma J, KoÅ¡ler J (2012) Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochem Geophys Geosyst 13(Q05007):1–17

    Google Scholar 

  • Tagami T, Ito H, Nishimura S (1990) Thermal annealing characteristics of spontaneous fission tracks in zircon. Chem Geol 80:159–169

    Google Scholar 

  • Tagami T, Carter A, Hurford AJ (1996) Natural long term annealing of the zircon fission track system in Vienna Basin deep borehole samples: constraints upon the partial annealing zone and closure temperature. Chem Geol 130:147–157

    Article  Google Scholar 

  • van der Beek P, Robert X, Mugnier JL, Bernet M, Huyghe P, Labrin E (2006) Late Miocene–recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission-track thermochronology of Siwalik sediments, Nepal. Basin Res 18:413–434

    Article  Google Scholar 

  • Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224:441–451

    Article  Google Scholar 

  • Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312:190–194

    Article  Google Scholar 

  • Vermeesch P (2013) Multi-sample comparison of detrital age distributions. Chem Geol 341:140–146

    Article  Google Scholar 

  • Vermeesch P (2018) Chapter 6. Statistics for fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Villa IM (1998) Isotopic closure. Terra Nova 10(1):42–47

    Article  Google Scholar 

  • White NM, Pringle M, Garzanti E, Bickle M, Najman Y, Chapman H, Friend P (2002) Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth Planet Sci Lett 195(1):29–44

    Article  Google Scholar 

  • Willett SD, Brandon MT (2013) Some analytical methods for converting thermochronometric age to erosion rate. Geochem Geophys Geosyst 14:209–222

    Article  Google Scholar 

  • Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35:137–175

    Article  Google Scholar 

Download references

Acknowledgements

This work benefited from insightful discussions with I. M. Villa and from constructive reviews by M. L. Balestrieri, S. Kelley and P. G. Fitzgerald.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco G. Malusà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malusà, M.G. (2019). A Guide for Interpreting Complex Detrital Age Patterns in Stratigraphic Sequences. In: Malusà, M., Fitzgerald, P. (eds) Fission-Track Thermochronology and its Application to Geology. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-89421-8_16

Download citation

Publish with us

Policies and ethics