Skip to main content

Application of Fission-Track Thermochronology to Understand Fault Zones

  • Chapter
  • First Online:
Fission-Track Thermochronology and its Application to Geology

Abstract

The timing and thermal effects of fault motions can be constrained by fission-track (FT) thermochronology and other thermochronological analyses of fault zone rocks. Materials suitable for such analyses are produced by fault zone processes, such as: (1) mechanical fragmentation of host rocks, grain-size reduction of fragments and recrystallisation of grains to form mica and clay minerals, (2) secondary heating/melting of host rocks as the result of friction and (3) mineral vein formation as a consequence of fluid flow associated with fault motion. The geothermal structure of fault zones is primarily controlled by three factors: (a) the regional geothermal structure around the fault zone that reflects the background thermotectonic history of the study area, (b) frictional heating of wall rocks by fault motion and consequent heat transfer into surrounding rocks and (c) thermal effects of hot fluid flow in and around the fault zone. The thermal sensitivity of FTs is briefly reviewed, with a particular focus on the fault zone thermal processes, i.e., flash and hydrothermal heating. Based on these factors, representative examples as well as key issues, including sampling strategy, are highlighted for using thermochronology to analyse fault zone materials, such as fault gouges, pseudotachylytes and mylonites. The thermochronologic analyses of the Nojima fault in Japan are summarised, as an example of multidisciplinary investigations of an active seismogenic fault system. Geological, geomorphological and seismological implications of these studies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Fault zone” is a term to describe the spatial extent along a fault where rocks are significantly deformed by the faulting.

References

  • Ault AK, Reiners PW, Evans JP, Thomson SN (2015) Linking hematite (U–Th)/He dating with the microtextural record of seismicity in the Wasatch fault damage zone, Utah, USA. Geology 43:771–774

    Article  Google Scholar 

  • Baldwin SL, Fitzgerald PG, Malusà MG (2018) Chapter 13. Crustal exhumation of plutonic and metamorphic rocks: constraints from fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Boles JR, Eichhubl P, Garven G, Chen J (2004) Evolution of a hydrocarbon migration pathway along basin-bounding fault: evidence from fault cement. AAPG Bull 88:947–970

    Article  Google Scholar 

  • Boullier AM, Ohotani T, Fujimoto K, Ito H, Dubois M (2001) Fluid inclusions in pseudotachylytes from the Nojima fault, Japan. J Geophys Res 106:21965–21977

    Article  Google Scholar 

  • Brix MR, Stockhert B, Seidel E, Theye T, Thomson SN, Kuster M (2002) Thermobarometric data from a fossil zircon partial annealing zone in high pressure-low temperature rocks of eastern and central Crete, Greece. Tectonophysics 349:309–326

    Article  Google Scholar 

  • Brodsky EE, Mori J, Fulton PM (2010) Drilling into faults quickly after earthquakes. EOS Am Geophys Un 91:237–238

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, Oxford, 510 p

    Google Scholar 

  • Cox SF (2005) Coupling between deformation, fluid pressures and fluid flow in ore-producing hydrothermal environments. In: Economic geology 100th anniversary volume, pp 39–75

    Google Scholar 

  • Cox SF (2010) The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids 10:217–233

    Google Scholar 

  • d’Alessio MA, Blythe AE, Burgmann R (2003) No frictional heat along the San Gabriel Fault, California; evidence from fission-track thermochronology. Geology 31:541–544

    Article  Google Scholar 

  • Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission-track analysis. Rev Mineral Geochem 58:49–94

    Article  Google Scholar 

  • Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks, and implications for hydraulic structure of fault zone. J Struct Geol 19:1393–1404

    Article  Google Scholar 

  • Flotte N, Plagnes V, Sorel D, Benedicto A (2001) Attempt to date Pliestocene normal faults of the Corinth-Patras Rift (Greece) by U/Th method, and tectonic implications. Geophys Res Lett 28:3769–3772

    Article  Google Scholar 

  • Foster DA (2018) Chapter 11. Fission-track thermochronology in structural geology and tectonic studies. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Fujimoto K, Ueda A, Ohtani T, Takahashi M, Ito H, Tanaka H, Boullier AM (2007) Borehole water and hydrologic model around the Nojima fault, SW Japan. Tectonophysics 443:174–182

    Article  Google Scholar 

  • Fukuchi T, Imai N (2001) ESR and ICP analyses of the DPRI 500 m drill core samples penetrating through the Nojima Fault, Japan. Isl Arc 10:465–478

    Article  Google Scholar 

  • Gallagher K (1995) Evolving temperature histories from apatite fission-track data. Earth Planet Sci Lett 136:421–435

    Article  Google Scholar 

  • Haines SH, van der Pluijm BA (2008) Clay quantification and Ar–Ar dating of synthetic and natural gouge: application to the Miocene Sierra Mazatan detachment fault, Sonora, Mexico. J Struct Geol 30:525–538

    Article  Google Scholar 

  • Holdsworth RE, Butler CA, Roberts AM (1997) The recognition of reactivation during continental deformation. J Geol Soc London 154:73–78

    Article  Google Scholar 

  • Kamp PJJ, Green PF, White SH (1989) Fission track analysis reveals character of collisional tectonics in New Zealand. Tectonics 8:169–195

    Article  Google Scholar 

  • Ketcham R (2018) Chapter 3. Fission track annealing: from geologic observations to thermal modeling. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Lachenbruch H (1986) Simple models for the estimation and measurement of frictional heating by an earthquake. USGS Open File Rep 86-508

    Google Scholar 

  • Little TA, Cox S, Vry JK, Batt G (2005) Variations in exhumation level and uplift rate along the oblique-slip Alpine fault, central Southern Alps, New Zealand. GSA Bull 117:707–723

    Article  Google Scholar 

  • Magloughlin JF, Hall CM, van der Pluijm BA (2001) 40Ar–39Ar geochronometry of pseudotachylytes by vacuum encapsulation: North Cascade Mountains, Washington, USA. Geology 29:51–54

    Article  Google Scholar 

  • Maino M, Casini L, Ceriani A, Decarlis A, Di Giulio A, Seno S, Setti M, Stuart FM (2015) Dating shallow thrusts with zircon (U–Th)/He thermochronometry—the shear heating connection. Geology 43:495–498

    Article  Google Scholar 

  • Malusà MG, Fitzgerald PG (2018) Chapter 8. From cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Malusà MG, Fitzgerald PG (2018) Chapter 10. Application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Matsumoto H, Yamanaka C, Ikeya M (2001) ESR analysis of the Nojima fault gouge, Japan, from the DPRI 500 m borehole. Isl Arc 10:479–485

    Article  Google Scholar 

  • Metcalf JR, Fitzgerald PG, Baldwin SL, Munoz JA (2009) Thermochronology of a convergent orogeny: constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the central Pyrenean axial zone. Earth Planet Sci Lett 287:488–503

    Article  Google Scholar 

  • Mulch A, Cosca MA, Handy MR (2002) In-situ UV-laser 40Ar/39Ar geochronology of a micaceous mylonite: an example of defect-enhanced argon loss. Contrib Mineral Petrol 142:738–752

    Article  Google Scholar 

  • Murakami M (2010) Average shear work estimation of Nojima fault from fission-track analytical data. Earth Monthly (in Japanese) 32:24–29

    Google Scholar 

  • Murakami M, Tagami T (2004) Dating pseudotachylyte of the Nojima fault using the zircon fission-track method. Geophys Res Lett 31

    Google Scholar 

  • Murakami M, Tagami T, Hasebe N (2002) Ancient thermal anomaly of an active fault system: zircon fission-track evidence from Nojima GSJ 750 m borehole samples. Geophys Res Lett 29

    Google Scholar 

  • Murakami M, Kosler J, Takagi H, Tagami T (2006a) Dating pseudotachylyte of the Asuke Shear Zone using zircon fission-track and U–Pb methods. Tectonophysics 424:99–107

    Article  Google Scholar 

  • Murakami M, Yamada R, Tagami T (2006b) Short-term annealing characteristics of spontaneous fission tracks in zircon: a qualitative description. Chem Geol 227:214–222

    Article  Google Scholar 

  • Nuriel P, Rosenbaum G, Zhao JX, Feng Y, Golding SD, Villement B, Weinberger R (2012) U–Th dating of striated fault planes. Geology 40:647–650

    Article  Google Scholar 

  • O’Hara K (2004) Paleostress estimated on ancient seismogenic faults based on frictional heating of coal. Geophys Res Lett 31

    Google Scholar 

  • Oshiman N, Ando M, Ito H, Ikeda R (eds) (2001) Geophysical probing of the Nojima fault zone. Isl Arc 10:197–198

    Article  Google Scholar 

  • Otsuki K, Monzawa N, Nagase T (2003) Fluidization and melting of fault gouge during seismic slip: identification in the Nojima fault zone and implications for focal earthquake mechanisms. J Geophys Res 108

    Google Scholar 

  • Peterman ZE, Day W (1989) Early Proterozoic activity on Archean faults in the western Superior province—evidence from pseudotachylite. Geology 17:1089–1092

    Article  Google Scholar 

  • Reimold WU, Jessberger EK, Stephan T (1990) 40Ar–39Ar dating of pseudotachylite from the Vredefort dome, South Africa: a progress report. Tectonophysics 171:139–152

    Article  Google Scholar 

  • Ring U, Bernet M (2010) Fission-track analysis unravels the denudation history of the Bonar Range in the footwall of the Alpine fault, South Island, New Zealand. Geol Mag 147:801–813

    Article  Google Scholar 

  • Rolland Y, Corsini M, Rossi M, Cox SF, Pennacchioni G, Mancktelow N, Boullier AM (2007) Comment on “Alpine thermal and structural evolution of the highest external crystalline massif: The Mont Blanc” by P. H. Leloup, N. Arnaud, E. R. Sobel, and R. Lacassin. Tectonics 26

    Google Scholar 

  • Scholz CH (1980) Shear heating and the state of stress on faults. J Geophys Res 85:6174–6184

    Article  Google Scholar 

  • Scholz CH (1988) The brittle-plastic transition and the depth of seismic faulting. Geol Runds 77:319–328

    Article  Google Scholar 

  • Scholz CH (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge University Press, Cambridge, UK, 471 p

    Google Scholar 

  • Scholz CH, Beavan J, Hanks TC (1979) Frictional metamorphism, argon depletion, and tectonic stress on the Alpine fault, New Zealand. J Geophys Res 84:6770–6782

    Article  Google Scholar 

  • Seront S, Wong TF, Caine JS, Forster CB, Bruhn RL, Fredrich JT (1998) Laboratory characterization of hydromechanical properties of a seismogenic normal fault system. J Struct Geol 20:865–881

    Article  Google Scholar 

  • Seward D, Sibson RH (1985) Fission-track age for a pseudotachylite from the Alpine fault zone, New Zealand. New Z J Geol Geophys 28:553–557

    Article  Google Scholar 

  • Sherlock SC, Watts LM, Holdsworth R, Roberts D (2004) Dating fault reactivation by Ar/Ar laserprobe: an alternative view of apparently cogenetic mylonite-pseudotachylite assemblages. J Geol Soc London 161:335–338

    Article  Google Scholar 

  • Shimamoto T, Takemura K, Fujimoto K, Tanaka H, Wibberley CAJ (2001) Nojima fault zone probing by core analyses. Isl Arc 10:357–359

    Article  Google Scholar 

  • Sibson RH (1975) Generation of pseudotachylite by ancient seismic faulting. Geophys J Royal Astron Soc 43:775–794

    Article  Google Scholar 

  • Sibson RH (1977) Fault rocks and fault mechanisms. J Geol Soc London 133:191–213

    Article  Google Scholar 

  • Sibson RH (1992) Implications of fault-valve behavior for rupture nucleation recurrence. Tectonophysics 211:283–293

    Article  Google Scholar 

  • Simpson C (1985) Deformation of granitic rocks across the brittle-ductile transition. J Struct Geol 5:503–512

    Article  Google Scholar 

  • Solum JG, van der Pluijm BA, Peacor DR (2005) Neocrystallization, fabrics, and age of clay minerals from an exposure of the Moab fault, Utah. J Struct Geol 27

    Google Scholar 

  • Sueoka S, Kohn BP, Tagami T, Tsutsumi H, Hasebe N, Tamura A, Arai S (2012) Denudational history of the Kiso Range, central Japan, and its tectonic implications: constraints from low-temperature thermochronology. Isl Arc 21:32–52

    Article  Google Scholar 

  • Sueoka S, Tsutsumi H, Tagami T (2016) New approach to resolve the amount of Quaternary uplift and associated denudation of the mountain ranges in the Japanese Islands. Geosci Front 7:197–210

    Article  Google Scholar 

  • Tagami T (2005) Zircon fission-track thermochronology and applications to fault studies. Rev Mineral Geochem 58:95–122

    Article  Google Scholar 

  • Tagami T (2012) Thermochronological investigation of fault zones. Tectonophysics 538–540:67–85

    Article  Google Scholar 

  • Tagami T, Galbraith RF, Yamada R, Laslett GM (1998) Revised annealing kinetics of fission tracks in zircon and geological implications. In: van den Haute P, De Corte F (eds) Advances in fission-track geochronology. Kluwer, Dordrecht, The Netherlands, pp 99–112

    Chapter  Google Scholar 

  • Tagami T, Hasebe N, Kamohara H, Takemura K (2001) Thermal anomaly around Nojima fault as detected by the fission-track analysis of Ogura 500 m borehole samples. Isl Arc 10:457–464

    Article  Google Scholar 

  • Tagami T, Lal N, Sorkhabi RB, Nishimura S (1988) Fission track thermochronologic analysis of the Ryoke Belt and the Median Tectonic Line Southwest Japan. J Geophys Res 93:13705–13715

    Article  Google Scholar 

  • Tagami T, Murakami M (2007) Probing fault zone heterogeneity on the Nojima fault: constraints from zircon fission-track analysis of borehole samples. Tectonophysics 443:139–152

    Article  Google Scholar 

  • Tagami T, O’Sullivan PB (2005) Fundamentals of fission-track thermochronology. Rev Mineral Geochem 58:19–47

    Article  Google Scholar 

  • Takagi H, Arita K, Danhara T, Iwano H (2007) Timing of the Tsergo Ri Landslide, Langtang Himal, determined by fission track age for pseudotachylite. J Asian Earth Sci 29:466–472

    Article  Google Scholar 

  • Takagi H, Shimada K, Iwano H, Danhara T (2010) Oldest record of brittle deformation along the Median Tectonic Line: fission-track age for pseudotachylite in the Taki area, Mie Prefecture. J Geol Soc Japan 116:45–50

    Article  Google Scholar 

  • Tanaka H, Chester FM, Mori JJ, Wang CY (2007) Drilling into fault zones. Tectonophysics 443:123–125

    Article  Google Scholar 

  • van der Pluijm BA, Hall CM, Vrolijk PJ, Pevear DR, Covey MC (2001) The dating of shallow faults in the Earth’s crust. Nature 412:172–175

    Article  Google Scholar 

  • van der Pluijm BA, Vrolijk PJ, Pevear DR, Hall CM, Solum J (2006) Fault dating in the Canadian Rocky Mountains: evidence for late Cretaceous and early Eocene orogenic pulses. Geology 34:837–840

    Article  Google Scholar 

  • Verhaert G, Muchez P, Sintubin M, Similox-Tohon D, Vandycke S, Keppens E, Hodge EJ, Richards DA (2004) Origin of paleofluids in a normal fault setting in the Aegean region. Geofluids 4:300–314

    Article  Google Scholar 

  • Viola G, Mancktelow NS, Seward D, Meier A, Martin S (2003) The Pejo fault system; an example of multiple tectonic activity in the Italian Eastern Alps. GSA Bull 115:515–532

    Article  Google Scholar 

  • Warr LN, van der Pluijm BA, Peacor DR, Hall CM (2003) Frictional melt pulses during a ~1.1 Ma earthquake along the Alpine fault, New Zealand. Earth Planet Sci Lett 209:39–52

    Article  Google Scholar 

  • Warren-Smith E, Lamb S, Seward D, Smith E, Herman F, Stern T (2016) Thermochronological evidence of a low-angle, mid-crustal detachment plane beneath the central South Island, New Zealand. Geochem Geophys Geosyst 17:4212–4235

    Article  Google Scholar 

  • Watanabe Y, Nakai S, Lin A (2008) Attempt to determine U–Th ages of calcite veins in the Nojima fault zone, Japan. Geochem J 42:507–513

    Article  Google Scholar 

  • Wolfler A, Kurz W, Danisik M, Rabitsch R (2010) Dating of fault zone activity by apatite fission track and apatite (U–Th)/He thermochronometry: a case study from the Lavanttal fault system (Eastern Alps). Terra Nova 22:274–282

    Google Scholar 

  • Yamada K, Hanamuro T, Tagami T, Shimada K, Takagi H, Yamada R, Umeda K (2012) The first (U–Th)/He dating of a pseudotachlylyte collected from the Median Tectonic Line, southwest Japan. J Asian Earth Sci 45:17–23

    Article  Google Scholar 

  • Yamada K, Tagami T, Shimobayashi N (2003) Experimental study on hydrothermal annealing of fission tracks in zircon. Chem Geol 201:351–357

    Article  Google Scholar 

  • Yamada R, Murakami M, Tagami T (2007) Statistical modelling of annealing kinetics of fission tracks in zircon; reassessment of laboratory experiments. Chem Geol 236:75–91

    Article  Google Scholar 

  • Yamada R, Tagami T, Nishimura S, Ito H (1995) Annealing kinetics of fission tracks in zircon: an experimental study. Chem Geol 122:249–258

    Article  Google Scholar 

  • Zwingmann H, Mancktelow N (2004) Timing of Alpine fault gouges. Earth Planet Sci Lett 223:415–425

    Article  Google Scholar 

  • Zwingmann H, Yamada K, Tagami T (2010a) Timing of brittle deformation within the Nojima fault zone, Japan. Chem Geol 275:176–185

    Article  Google Scholar 

  • Zwingmann H, Mancktelow N, Antognini M, Lucchini R (2010b) Dating of shallow faults: new constraints from the AlpTransit tunnel site (Switzerland). Geology 38:487–490

    Article  Google Scholar 

Download references

Acknowledgements

The author thankfully acknowledges Ann Blythe and Meinert Rahn for their constructive and critical reviews of the manuscript, and Marco G. Malusà and Paul G. Fitzgerald for helpful editing of the chapter, particularly about the illustrations. The author thanks Masaki Murakami, Horst Zwingmann, Yumy Watanabe and Akito Tsutsumi for their helpful comments and arguments during the writing of the present chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Tagami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tagami, T. (2019). Application of Fission-Track Thermochronology to Understand Fault Zones. In: Malusà, M., Fitzgerald, P. (eds) Fission-Track Thermochronology and its Application to Geology. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-89421-8_12

Download citation

Publish with us

Policies and ethics