Skip to main content

Testing and Validation of Synchrophasor Devices and Applications

  • Chapter
  • First Online:
Power System Grid Operation Using Synchrophasor Technology

Part of the book series: Power Electronics and Power Systems ((PEPS))

Abstract

Synchrophasor-based monitoring and control applications are being integrated into power grid control centers or being explored in pilot phase projects to realize the vision of real-time monitoring and control of bulk power system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romano P, Paolone M (2014) Enhanced interpolated-DFT for synchrophasor estimation in FPGAS: theory, implementation, and validation of a PMU prototype. IEEE Trans Instrum Meas 63(12):2824–2836

    Article  Google Scholar 

  2. Karimi-Ghartemani M, Ooi BT, Bakhshai A (2011) Application of enhanced phase-locked loop system to the computation of synchrophasors. IEEE Trans Power Deliv 26(1):22–32

    Article  Google Scholar 

  3. de la O Serna JA, (2013) Synchrophasor estimation using prony’s method. IEEE Trans Instrum Meas 62(8):2119–2128

    Google Scholar 

  4. IEEE standard for synchrophasor measurements for power systems (2011). IEEE Std. C37.118.1-2011 (Revision of IEEE Std. C37.118-2005)

    Google Scholar 

  5. Phadke AG, Thorp JS, Adamiak MG (1983) A new measurement technique for tracking voltage phasors, local system frequency, and rate of change of frequency. IEEE Trans Power Appar Syst PAS 102(5):1025–1038

    Article  Google Scholar 

  6. Patel AE, Aivolaitas S (2010) Real-time application of synchrophasors for improving reliability. NERC Tech Rep

    Google Scholar 

  7. De La Ree J, Centeno V, Thorp J, Phadke A (2010) Synchronized phasor measurement applications in power systems. IEEE Trans Smart Grid 1(1):20–27

    Article  Google Scholar 

  8. Lee H, Tushar, Cui B, Mallikeswaran A, Banerjee P, Srivastava AK (2017) A review of synchrophasor applications in smart electric grid. Wiley Interdiscip Rev Energy Environ 6(3):e223–n/a (Online). https://doi.org/10.1002/wene.223

    Article  Google Scholar 

  9. Nuthalapati S, Phadke AG (2015) Managing the grid: using synchrophasor technology [guest editorial]. IEEE Power Energy Mag 13(5):10–12

    Article  Google Scholar 

  10. IEEE standard for synchrophasers for power systems (1995). IEEE Std 1344-1995 (R2001)

    Google Scholar 

  11. IEEE standard for synchrophasors for power systems (2006). IEEE Std C37.118-2005 (Revision of IEEE Std 1344-1995) 1–57

    Google Scholar 

  12. IEEE standard for synchrophasor measurements for power systems-Amendment 1: modification of selected performance requirements (2014). IEEE Std C37.118.1a-2014 (Amendment to IEEE Std. C37.118.1-2011)

    Google Scholar 

  13. RTDS, “RTDS” (Online). http://www.rtds.com

  14. OPENPDC, “OPENPDC” (Online). http://www.gridprotectionalliance.org

  15. Synchro-phaor data quality (2011). Tech Rep. http://www.naspi.org/meetings/workgroup/2011 February /presentations/techpanel/tech panel data quality 20110224.pdf

  16. Murthy C, Mishra A, Ghosh D, Roy DS, Mohanta DK (2014) Reliability analysis of phasor measurement unit using hidden markov model. IEEE Syst J 8(4):1293–1301

    Article  Google Scholar 

  17. Aminifar F, Bagheri-Shouraki S, Fotuhi-Firuzabad M, Shahidehpour M (2010) Reliability modeling of PMUs using fuzzy sets. IEEE Trans Power Deliv 25(4):2384–2391

    Article  Google Scholar 

  18. Reinhard K (2012) On data quality and availability modeling of power grid phasor measurements. In: North American power symposium (NAPS). pp 1–5

    Google Scholar 

  19. Zhang Q, Luo X, Bertagnolli D, Maslennikov S, Nubile B (2013) PMU data validation at iso new england. In: Power and energy society general meeting (PES). IEEE, pp 1–5

    Google Scholar 

  20. Methodology for examining the impact of error and weaknesses in PMU data on operational applications (2011). Tech Rep. https://www.naspi.org/File.aspx?fileID=1572

  21. Su HY, Liu CW (2013) An adaptive PMU-based secondary voltage control scheme. IEEE Trans Smart Grid 4(3):1514–1522

    Article  MathSciNet  Google Scholar 

  22. Liu Z, Il MD (2010) Toward PMU-based robust automatic voltage control (avc) and automatic flow control (afc). In: IEEE PES general meeting. IEEE, pp 1–8

    Google Scholar 

  23. Khan MT, Siddiqui AS (2016) Facts device control strategy using PMU. Perspect Sci Recent Trends Eng Mater Sci 8:730–732 (Online). http://www.sciencedirect.com/science/article/pii/S2213020916302117

    Article  Google Scholar 

  24. Ouadi A, Bentarzi H, Chafai M (2016) A new PMU based power swing detector to prevent mal-operation of distance relay. Russ Electr Eng 87(10):572–578 (Online). https://doi.org/10.3103/S1068371216100059

    Article  Google Scholar 

  25. Wang YJ, Liu CW, Liu YH (2005) A PMU based special protection scheme: a case study of taiwan power system. Int J Electr Power Energy Syst 27(3):215–223 (Online). http://www.sciencedirect.com/science/article/pii/S0142061504001425

    Article  Google Scholar 

  26. Rahmatian M, Dunford W, Moshref A (2014) PMU based system protection scheme. In: Electrical power and energy conference (EPEC). IEEE, pp. 35–40

    Google Scholar 

  27. Hashiesh F, Mostafa HE, Khatib AR, Helal I, Mansour MM (2012) An intelligent wide area synchrophasor based system for predicting and mitigating transient instabilities. IEEE Trans Smart Grid 3(2):645–652

    Article  Google Scholar 

  28. Palizban A (2015) Wide-area monitoring and control utilizing PMU measurements for a system protection scheme. Ph.D. dissertation, University of British Columbia

    Google Scholar 

  29. Madani V, Novosel D, Horowitz S, Adamiak M, Amantegui J, Karlsson D, Imai S, Apostolov A (2010) IEEE PSRC report on global industry experiences with system integrity protection schemes (sips). IEEE Trans Power Deliv 25(4):2143–2155

    Article  Google Scholar 

  30. Vaiman M, Hines P, Jiang J, Norris S, Papic M, Pitto A, Wang Y, Zweigle G (2013) Mitigation and prevention of cascading outages: methodologies and practical applications. In: 2013 IEEE power energy society general meeting. pp. 1–5

    Google Scholar 

  31. Nerc standard PRC-012-2 remedial action schemes. Western electric coordinating council (2016) (Online). https://www.wecc.biz/Reliability/WECC-0126 PRC-012-2 WPRC Paper Henneberg Davis.pdf

  32. Remedial action schemes. NERC Standard PRC-012-2 (Online). http://www.nerc.com/pa/Stand/Prjct201005_3RmdialActnSchmsPhase3ofPrtctnSystmsDL/Clean_since_last_posting_PRC-012-2_02022016_final.pdf

  33. Sykes J, Hu Y, Adamiak M, Apostolov A, Dac-Phuoc B, Deronja A, Ebrecht J, Henneberg G, Imai S, Madani V, Miller D, Quintana ADL, Vandiver B, Whittaker R, Zubair M, Ward S (2014) IEEE/PES PSRC report on design and testing of selected system integrity protection schemes. In: 2014 67th Annual conference for protective relay engineers. pp 738–742

    Google Scholar 

  34. (2013) Communications systems performance guide for electric protection systems. West Electr Coord Counc. (Online). https://www.wecc.biz/Reliability/CommunicationSystem Performance Guide for Electric Protection Systems.pdf

  35. (2010) Guidelines for the design of critical communications circuits. West Electr Coord Counc. (Online). https://www.wecc.biz/Reliability/Guidelines for the Designof Critical Communications Circuits.pdf

  36. Chvez LEO, Bakken DE, Bose A, Panciatici P (2015) Erkios: end-to-end field-based ras testing. In: 2015 IEEE power energy society innovative smart grid technologies conference (ISGT). pp 1–5

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Power System Engineering Research Center (PSERC), Rseau de Transport d’lectricit (RTE), France, and the US Department of Energy (DOE) for financially supporting this work. The authors would also like to thank Southern California Edition (SCE), National Institute of Standard and Technology (NIST), Pacific Northwest National Lab (PNNL), Schweitzer Engineering Lab (SEL), and Real-Time Digital Simulator (RTDS) for helping with various aspects of building this test bed and testing and validation of synchrophasor devices and associated applications. Additionally, the authors also appreciate the support and contributions from Patrick Panciatici, Yinghui Wu, David Bakken, and Arvind Mallikeshwaran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, P., Pandey, S., Srivastava, A.K., Lee, D. (2019). Testing and Validation of Synchrophasor Devices and Applications. In: Nuthalapati, S. (eds) Power System Grid Operation Using Synchrophasor Technology . Power Electronics and Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-89378-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89378-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89377-8

  • Online ISBN: 978-3-319-89378-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics