Skip to main content

Locomotion and Telepresence in Virtual and Real Worlds

  • Conference paper
  • First Online:
Human Friendly Robotics

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 7))

Abstract

We present a system in which a human master commands in a natural way the locomotion of a humanoid slave agent in a virtual or real world. The system combines a sensorized passive locomotion platform (Cyberith Virtualizer) for the walking human, the V-REP simulation environment, an Aldebaran Nao humanoid robot with on-board vision, and a HMD (Oculus Rift) for visual feedback of the virtual or real scene. Through this bidirectional human-robot communication, the human achieves a telepresence that may be useful in different application domains. Experimental results are presented to illustrate the quality and limits of the achieved immersive experience for the user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niemeyer, G., Preusche, C., Stramigioli, S., Lee, D.: Telerobotics. In Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1085–1108. Springer (2016)

    Chapter  Google Scholar 

  2. Scheggi, S., Meli, L., Pacchierotti, C., Prattichizzo, D.: Touch the virtual reality: using the leap motion controller for hand tracking and wearable tactile devices for immersive haptic rendering. In: Proceedings of the ACM SIGGRAPH (2015)

    Google Scholar 

  3. Souman, J., Robuffo Giordano, P., et al.: CyberWalk: Enabling unconstrained omnidirectional walking through virtual environments. ACM Trans. Appl. Percept. 8(4), 24:1–24:22 (2011)

    Article  Google Scholar 

  4. LaValle, S.: Virtual Reality. http://vr.cs.uiuc.edu

  5. Maisto, M., Pacchierotti, C., Chinello, F., Salvietti, G., De Luca, A., Prattichizzo, D.: Evaluation of wearable haptic systems for the fingers in augmented reality applications. IEEE Trans. Haptics (2017)

    Google Scholar 

  6. Haddadin, S., Croft, E.: Physical human-robot interaction. In Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1835–1874. Springer (2016)

    Chapter  Google Scholar 

  7. Biocca, F., Delaney, B.: Immersive virtual reality technology. In: Biocca, F., Levy, M. (eds.) Communication in the Age of Virtual Reality, pp. 15–32. Lawrence Erlbaum, Hillsdale, NJ (1995)

    Google Scholar 

  8. Rendering to the Oculus Rift. https://goo.gl/WFAu1D

  9. Rohmer, E., Singh, S. PN, Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1321–1326 (2013)

    Google Scholar 

  10. Suleiman, W., Yoshida, E., Kanehiro, F., Laumond, J.P., Monin, A.: On human motion imitation by humanoid robot. Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2697–2704 (2008)

    Google Scholar 

  11. Do, M., Azad, P., Asfour, T., Dillmann, R.: Imitation of human motion on a humanoid robot using non-linear optimization. Proceedings of the 8th IEEE International Conference on Humanoid Robots, pp. 545–552 (2008)

    Google Scholar 

  12. Kim, T., Kim, E., Kim, J.W.: Development of a humanoid walking command system using a wireless haptic controller, pp. 1178–1183. In: Proceedings of the International Conference on Control, Automation and Systems (2008)

    Google Scholar 

  13. Naksuk, N., Lee, CS G., Rietdyk, S.: Whole-body human-to-humanoid motion transfer. In: Proceedings of the 5th IEEE International Conference on Humanoid Robots, pp. 104–109 (2005)

    Google Scholar 

  14. Koenemann, J., Burget, F., Bennewitz, M.: Real-time imitation of human whole-body motions by humanoids. Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2806–2812 (2014)

    Google Scholar 

  15. Dariush, B., Gienger, M., et al.: Online transfer of human motion to humanoids. Int. J. Hum. Robot. 6(2), 265–289 (2009)

    Article  Google Scholar 

  16. Lemoine, P., Thalmann, D., Gutiérrez, M., Vexo, F.: The “Caddie Paradigm": a free-locomotion interface for teleoperation. In: Workshop on Modelling and Motion Capture Techniques for Virtual Environments (CAPTECH), pp. 20–25 (2004)

    Google Scholar 

  17. Cakmak, T., Hager, H.: Cyberith virtualizer—a locomotion device for virtual reality. ACM SIGGRAPH (2014)

    Google Scholar 

  18. Ferro, M., Paolillo, A., Cherubini, A., Vendittelli, M.: Omnidirectional humanoid navigation in cluttered environments based on optical flow information. In: Proceedings of the 16th IEEE International Conference on Humanoid Robots, pp. 75–80 (2016)

    Google Scholar 

  19. Project Avatar: A Gesture-Controlled Fully Immersive Telepresence Robotics System with NAO*. https://goo.gl/oIQT8t

  20. V-REP remote API. https://goo.gl/VZ3b0L

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro De Luca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spada, A., Cognetti, M., De Luca, A. (2019). Locomotion and Telepresence in Virtual and Real Worlds. In: Ficuciello, F., Ruggiero, F., Finzi, A. (eds) Human Friendly Robotics. Springer Proceedings in Advanced Robotics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-89327-3_7

Download citation

Publish with us

Policies and ethics